scholarly journals Robust clustering algorithms for image segmentation and curve analysis

2009 ◽  
Author(s):  
Zhimin Wang
Author(s):  
Anirban Mukhopadhyay

The problem of image segmentation is frequently modeled as a problem of clustering the pixels of the images based on their intensity levels. In some recent studies, multiobjective clustering algorithms, where multiple cluster validity measures are optimized simultaneously for yielding robust clustering solutions have been proposed. It has been observed that the same set of validity measures optimized simultaneously do not generally perform well for all image datasets. In view of this, in this article, an interactive approach for multiobjective clustering is proposed for segmentation of multispectral Magnetic Resonance Image (MRI) of the human brain. In this approach, a human decision maker interacts with the multiobjective evolutionary clustering technique during execution in order to obtain the final clustering, the suitable set of validity measures for the input image, as well as the number of clusters by employing a variable-length encoding of the chromosomes. The effectiveness of the proposed method is demonstrated on many simulated normal and MS lesion MRI brain images.


Author(s):  
R. R. Gharieb ◽  
G. Gendy ◽  
H. Selim

In this paper, the standard hard C-means (HCM) clustering approach to image segmentation is modified by incorporating weighted membership Kullback–Leibler (KL) divergence and local data information into the HCM objective function. The membership KL divergence, used for fuzzification, measures the proximity between each cluster membership function of a pixel and the locally-smoothed value of the membership in the pixel vicinity. The fuzzification weight is a function of the pixel to cluster-centers distances. The used pixel to a cluster-center distance is composed of the original pixel data distance plus a fraction of the distance generated from the locally-smoothed pixel data. It is shown that the obtained membership function of a pixel is proportional to the locally-smoothed membership function of this pixel multiplied by an exponentially distributed function of the minus pixel distance relative to the minimum distance provided by the nearest cluster-center to the pixel. Therefore, since incorporating the locally-smoothed membership and data information in addition to the relative distance, which is more tolerant to additive noise than the absolute distance, the proposed algorithm has a threefold noise-handling process. The presented algorithm, named local data and membership KL divergence based fuzzy C-means (LDMKLFCM), is tested by synthetic and real-world noisy images and its results are compared with those of several FCM-based clustering algorithms.


2011 ◽  
Vol 474-476 ◽  
pp. 442-447
Author(s):  
Zhi Gao Zeng ◽  
Li Xin Ding ◽  
Sheng Qiu Yi ◽  
San You Zeng ◽  
Zi Hua Qiu

In order to improve the accuracy of the image segmentation in video surveillance sequences and to overcome the limits of the traditional clustering algorithms that can not accurately model the image data sets which Contains noise data, the paper presents an automatic and accurate video image segmentation algorithm, according to the spatial properties, which uses the Gaussian mixture models to segment the image. But the expectation-maximization algorithm is very sensitive to initial values, and easy to fall into local optimums, so the paper presents a differential evolution-based parameters estimation for Gaussian mixture models. The experiment result shows that the segmentation accuracy has been improved greatly than by the traditional segmentation algorithms.


2015 ◽  
Vol 75 (23) ◽  
pp. 15327-15339 ◽  
Author(s):  
Hua-Ching Chen ◽  
Hsuan-Ming Feng ◽  
Te-Hui Lin ◽  
Ching-Yi Chen ◽  
Yu-Xiang Zha

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ningning Zhou ◽  
Tingting Yang ◽  
Shaobai Zhang

Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD) and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.


Author(s):  
Hui Du ◽  
Yuping Wang ◽  
Xiaopan Dong

Clustering is a popular and effective method for image segmentation. However, existing cluster methods often suffer the following problems: (1) Need a huge space and a lot of computation when the input data are large. (2) Need to assign some parameters (e.g. number of clusters) in advance which will affect the clustering results greatly. To save the space and computation, reduce the sensitivity of the parameters, and improve the effectiveness and efficiency of the clustering algorithms, we construct a new clustering algorithm for image segmentation. The new algorithm consists of two phases: coarsening clustering and exact clustering. First, we use Affinity Propagation (AP) algorithm for coarsening. Specifically, in order to save the space and computational cost, we only compute the similarity between each point and its t nearest neighbors, and get a condensed similarity matrix (with only t columns, where t << N and N is the number of data points). Second, to further improve the efficiency and effectiveness of the proposed algorithm, the Self-tuning Spectral Clustering (SSC) is used to the resulted points (the representative points gotten in the first phase) to do the exact clustering. As a result, the proposed algorithm can quickly and precisely realize the clustering for texture image segmentation. The experimental results show that the proposed algorithm is more efficient than the compared algorithms FCM, K-means and SOM.


Sign in / Sign up

Export Citation Format

Share Document