scholarly journals Stabilitas Digester Anaerobik Satu Tahap dalam Produksi Biogas pada Variasi Temperatur Menggunakan Reaktor Batch

2021 ◽  
Vol 10 (1) ◽  
pp. 25-30
Author(s):  
Bambang Trisakti ◽  
Irvan ◽  
Desi Berliana Sitompul

Anaerobic digestion is the decomposition of organic matter by microbes into methane, carbon dioxide, and hydrogen sulfide in the absence of oxygen. This study aimed to obtain the stability of the one stage anaerobic digester in biogas production that was seen through pH and alkalinity parameters. The process was carried out by varying the temperature, which is 35 °C, 45 °C, and 55 °C with pH maintained 7 (± 0.2). Analysis of pH and alkalinity was carried out to assess the stability of reactor using samples taken from the reactor overflow. The pH profile produced was relatively stable with a pH range between 6.8 - 7.3. The resulting alkalinity is relatively stable with aalkalinity range between 3.500 – 4.500 mg/L. The volume of biogas produced at 35 °C, 45 °C, and 55 °C respectively are 2065 mL, 3830 mL, and 4570 mL with the highest concentrations of methane (CH4), Carbon dioxide (CO2) and trace Hydrogen Sulfide (H2S) at a temperature of 55 oC obtained the value of the composition of methane, carbon dioxide, and hydrogen sulfide each at 89,000 %, 11,000 %, and 0,011 %.

2019 ◽  
Vol 8 (2) ◽  
pp. 67-71
Author(s):  
Surya Dana Sembiring ◽  
Irvan ◽  
Bambang Trisakti ◽  
Dewi Novita Sari Sihombing

Anaerobic digestation was the docomposition of microbes from organic matter into methane, carbon dioxide, organic nutrients and compost in oxygen depletion and hydrogen gas. This study aimed to obtain the stability of the Uplow Anaerobic Sludge Hollow Centered Packed Bed reactor in biogas production at an ambient state that was seen through pH and alkalinity parameters. The process was carried out by varying hydraulic retention time, ei 45 days, 25 days, 10 days and 6 days with pH maintained 7 (±0,2). Analysis of pH and alkalinity was carried out to assess the stability of the reactor at ambient conditions using samples taken from the reactor overflow. The pH profile produced was relatively stable with a pH range between 5.8 - 7.2. The resulting alkalinity value was relatively stable with a pH range between 2,000-4,000 mg/L. The volume of biogas produced was 470 ml with concentration of methane (CH4), carbon dioxide (CO2) and trace hydrogen sulfide (H2S) respectively by 88.00%, 11.00% and 0.10%.


2019 ◽  
Vol 8 (1) ◽  
pp. 37-41
Author(s):  
Bambang Trisakti ◽  
Irvan ◽  
M.Taufan Anantama ◽  
Arbie Saldi Zusri ◽  
Alfian Haikel Lubis ◽  
...  

Anaerobic digestion is one of solution to environmental problems and energy sources for current energy needs. In anaerobic digestion, organic material is degraded by bacteria, which is carried out without oxygen, and converts it to a mixture of methane and carbon dioxide. POME can be degraded anaerobically in anaerobic digester to produce biogas. This study aims to increase the conversion of biogas produced using a 2 liter Continuous Stirred Tank Reactor (CSTR) type digester in the methanogenesis process by recycling the effluent produced through the ultrafiltration membrane in a transition condition (45oC). The process is carried out by varying the recycle ratio, which is 0%, 15% and 25% on HRT 6 days with a condition of pH 7 ± 0.2. The highest average biogas production was achieved at the 25% recycle ratio of 33.15 x 10-5 L / mg VS. day, with the composition of methane, carbon dioxide and hydrogen sulfide each of 79%; 19%; and 0.006%, with degradation of VS and COD of 39.58% and 66.33% respectively. For the composition of the highest CH4 content obtained at a variation of the 15% recycle ratio which is equal to 85% while for the composition of carbon dioxide, and hydrogen sulfide each is 14%; and 0.0076%.


2013 ◽  
Vol 5 (1) ◽  
pp. 63-70
Author(s):  
Aidil Zamri

Biogas is a gas fermentation of organic materials which contain most of the gas methane, carbon dioxide, few of carbon monoxide, hydrogen, hydrogen sulfide, nitrogen and ammonia. One of technological development of biogas production is anaerobic reactor. The processing of biogas technology is influenced by several factors, such as temperature and humidity. In this study, temperature is adjusted using a spiral system and biogas reactor which submerged into the water. The temperature of water can be controlled. In another case there is reactor without temperature setting as a comparison. The observation shows that the reactor in the water produces most biogas, reactor spiral in second place and reactor without heating in the last one.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 941
Author(s):  
Jun Liu ◽  
Qiang Chen ◽  
Peng Qi

Upgrading raw biogas to methane (CH4) is a vital prerequisite for the utilization of biogas as a vehicle fuel or the similar field as well. In this work, biogas yield from the anaerobic fermentation of food waste containing methane (CH4, 60.4%), carbon dioxide (CO2, 29.1%), hydrogen sulfide (H2S, 1.5%), nitrogen (N2, 7.35%) and oxygen (O2, 1.6%) was upgraded by dynamic adsorption. The hydrogen sulfide was removed from the biogas in advance by iron oxide (Fe2O3) because of its corrosion of the equipment. Commercial 13X zeolite and carbon molecular sieve (CMS) were used to remove the other impurity gases from wet or dry biogas. It was found that neither 13X zeolite nor CMS could effectively remove each of the impurities in the wet biogas for the effect of water vapor. However, 13X zeolite could effectively remove CO2 after the biogas was dried with silica and showed a CO2 adsorption capacity of 78 mg/g at the condition of 0.2 MPa and 25 °C. Additionally, 13X zeolite almost did not adsorb nitrogen (N2), so the CH4 was merely boosted to ac. 91% after the desulfurated dry biogas passed through 13X zeolite, nitrogen remaining in the biogas. CMS would exhibit superior N2 adsorption capacity and low CO2 adsorption capacity if some N2 was present in biogas, so CMS was able to remove all the nitrogen and fractional carbon dioxide from the desulfurated dry biogas in a period of time. Finally, when the desulfurated dry biogas passed through CMS and 13X zeolite in turn, the N2 and CO2 were sequentially removed, and then followed the high purity CH4 (≥96%).


Fuel ◽  
2021 ◽  
Vol 284 ◽  
pp. 118909 ◽  
Author(s):  
Ruifeng Peng ◽  
Yumin Chen ◽  
Baoxu Zhang ◽  
Zhipeng Li ◽  
Xin Cui ◽  
...  

2015 ◽  
Vol 15 (1) ◽  
pp. 72
Author(s):  
Allan N. Soriano ◽  
Adonis P. Adornado ◽  
Angelica A. Pajinag ◽  
Diana Joy F. Acosta ◽  
Niel M. Averion ◽  
...  

The paper evaluates the performance of the nine selected alkanolamines, namely, monoethanolamine (MEA), diethanolamine (DEA), monomethylethanolamine (MMEA), aminoethylethanolamine (AEEA), diisopropanolamine (DIPA), triethanolamine (TEA), dimethylethanolamine (DMEA), N-methyldiethanolamine (MDEA), and piperazine (PZ) for post-combustion capture of pure hydrogen sulfide (H2S) and mixtures of hydrogen sulfide and carbon dioxide (CO2) at different solvent mass flows: 500, 750, and 1000 kg/h using Aspen Plus® Version 7.2. The objective of the paper is to select the best chemical absorbent for each different criterion: percent H2S removal, percent H2S solvent carrying capacity, percent H2S retained in the lean solvent, percent CO2 and H2S removal, percent CO2 and H2S solvent carrying capacity, percent CO2 and H2S retained in the lean solvent. Based from the obtained results, piperazine is an absorbent that has a good potential for use as a single amine or in mixtures with other amines for capture of pure H2S and mixtures of H2S and CO2.


2015 ◽  
Vol 19 (6) ◽  
pp. 2161-2169 ◽  
Author(s):  
Amir Rowhani ◽  
Sadegh Tabejamaat

An experimental investigation of the stability limits of biogas in a swirling non-premixed burner has been carried out. A mixture of 60% methane (CH4) and 40% carbon dioxide (CO2) was used to reach the typical biogas composition. Vane swirlers with 30?, 45? and 60? angles were used to make the swirling air. The biogas stability limits and flame behavior under swirling conditions were tested. Besides, effects of air dilution with nitrogen (N2) and CO2 on biogas stability limits were investigated. The results show that using swirl can enhance the flame stability limits approximately four or five times comparing to non-swirling air stream. Adding N2/CO2 to the air had negative effects on the flame stability but no changes were observed in the flame structure. The maximum air dilution was also obtained when 27% and 15% N2 was added to the swirling air under strong and weak swirl, respectively.


Sign in / Sign up

Export Citation Format

Share Document