h2s removal
Recently Published Documents


TOTAL DOCUMENTS

293
(FIVE YEARS 31)

H-INDEX

35
(FIVE YEARS 1)

ACS Omega ◽  
2022 ◽  
Author(s):  
Ju Wang ◽  
Jie Xu ◽  
Xianli Wu ◽  
Bin Liang ◽  
Chunhua Du




Carbon Trends ◽  
2022 ◽  
pp. 100145
Author(s):  
Eleni Thomou ◽  
Georgia Basina ◽  
Konstantinos Spyrou ◽  
Yasser Al Wahedi ◽  
Petra Rudolf ◽  
...  
Keyword(s):  


2021 ◽  
Author(s):  
Basit Altaf ◽  
AbdelKader Allouti ◽  
Rachit Kedia ◽  
Azer Abdullayev ◽  
Mahmoud Bedewi

Abstract The presence of hydrogen sulphide (H2S) in produced reservoir fluids mandates precautions in the design and operation of the surface facilities. The toxicity and corrosive nature of H2S, and the need to prevent both plugging of reservoir formations and increasing the sulphur content of the produced oil dictates the criticality of forecasting and monitoring the volumes and concentrations of H2S flowing through the whole asset. Ensuring the concentration is within acceptable operational limits is critical to safeguard the overall asset and the integrity of the surface pipeline network. The objective of this study was to utilize a history matched Digital Twin Integrated Asset Model (IAM) to predict the volumes and concentrations of H2S in a field located offshore Abu Dhabi by modeling the multi-stage separation, H2S removal, and re-injection facilities for gas injection and gas lifts. The field consists of multiple stacked carbonate reservoirs sharing the same surface facilities. The proposed modelling of H2S removal strategy involved a series of steps beginning with the sweetening of the produced associated gas for fuel gas requirements and mixing the extracted H2S volumes with the gas injection and gas lift streams. The sweetening process effectively mitigated any potential asset integrity issues arising due to corrosion of the power generation system and other surface facility assets. The stripped H2S gas, re-combined with the remaining produced gas, was used for gas-lifts and reinjected into the lower reservoirs for pressure maintenance and enhanced oil recovery (EOR). A next-generation surface-subsurface coupled simulator was utilized for the modeling of this field including the full asset surface pipeline network, the H2S removal plant, bypass lines and re-injection facilities for gas injection and gas-lifts. The Digital Twin IAM approach provided a robust method for tracking and predicting the concentration and volume of H2S in the produced gas over a period of 50 years. The simulation allowed tracking the H2S from its initial location in the reservoirs, into the production wells, then through the pipelines, all the way to the surface facilities where the sweetening of the produced is handled. Moreover, the use of the Digital Twin allowed the verification of the disposal plan of the extracted H2S, showing that mixing it with the re-injection gas stream is a feasible option. Recommendations based on the model were provided to the production and facilities team, leading to a robust long-term field development plan that ensures asset integrity.



2021 ◽  
Vol 12 (6) ◽  
pp. 8057-8069

The emission of hydrogen sulfide (H2S) from municipal solid waste is one of the environmental issues that raised the public’s attention and awareness. Exposure to H2S that brings a foul smell of rotten eggs will cause headaches, irritation, dizziness, fatigue, and even death if the concentration of H2S is too high. The study’s goals are to investigate the properties of biochars made from rice hulls, banana peels, and sawdust; to compare the biochars’ physical and chemical properties; and establish the H2S removal efficiency of the three biochars. Biochars derived from rice hull (RHB-500), banana peel (BPB-550), and sawdust (SDB-500) by pyrolysis were used as the adsorbents. The biochar yield, pH, ash content, surface functional group, and morphology of the biochars produced were investigated. In this study, H2S was synthesized by mixing food waste and soil in the experimental column. The H2S produced was reduced by the adsorption method. The removal efficiencies of H2S for each biochar were determined by allowing the synthetic H2S to flow through the two columns that were packed with sand (act as control) and biochars, respectively. All biochars were alkaline, and BPB-550 had the highest pH, followed by SDB-500 and finally RHB-500. The order for removal efficiency of H2S (>94%) is BPB-550 > SDB-500 > RHB-500. Overall, the biochars derived from biomass had a strong ability to act as the adsorbents for H2S removal.



Fuel ◽  
2021 ◽  
Vol 306 ◽  
pp. 121696
Author(s):  
M. Andreides ◽  
L. Pokorná-Krayzelová ◽  
J. Bartáčková ◽  
J. Bartáček




Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6542
Author(s):  
Byung-Kyu Ahn ◽  
Tae-Hoon Kim ◽  
Jiyun Seon ◽  
Seung-Kyun Park ◽  
Yeo-Myeong Yun

Direct addition of sulfur-reducing agents during anaerobic digestion (AD) is very effective in controlling hydrogen sulfide (H2S) content in biogas, although one major problem is the high operational cost due to the large amount of chemicals used. The objective of this study was to remove H2S using a waste mill scale (MS) as a sulfur-reducing agent. To evaluate its feasibility, MS was added to AD fed with food waste (FW) at concentrations between 0 and 160 g MS/kg total chemical oxygen demand (TCOD) during the batch test, and the experimental results were compared to those of the batch test with the addition of iron chloride (FeCl3). Both FeCl3 and MS played an important role as electro-conductive materials in improving methane productivity by promoting direct interspecies electron transfer. An increase in H2S removal efficiency was observed with increases in both materials. In total, 30%, 60%, and 90% of H2S production based on the maximum sulfur in the form of H2S (control) was 3.7, 9.4, and 23.8 g FeCl3/kg TCOD and 13.3, 34.1, and 86.2 g MS/kg TCOD, respectively. This finding indicates that MS can be used as a sulfur-reducing agent substitute for H2S removal in AD fed with FW.



2021 ◽  
pp. 963-973
Author(s):  
Li Haifeng ◽  
Su Sheng ◽  
Liu Lijun ◽  
Xu Kai ◽  
Hu Song ◽  
...  


Author(s):  
Yi Yuan ◽  
Lijia Huang ◽  
Tian C. Zhang ◽  
Like Ouyang ◽  
Shaojun Yuan


Sign in / Sign up

Export Citation Format

Share Document