scholarly journals Developing the Geneva Solar Cadaster: A decision support tool for sustainable energy management in urban areas

2019 ◽  
pp. 58-61
Author(s):  
Gilles Desthieux
1999 ◽  
Vol 69 (1-2) ◽  
pp. 31-42
Author(s):  
D. Deligiorgi ◽  
C. Cartalis ◽  
G. Kouroupetroglou ◽  
C. Moutselos ◽  
E. Kambitsi

2019 ◽  
Author(s):  
Charlotte Heinzlef ◽  
Vincent Becue ◽  
Damien Serre

Abstract. In the context of climate change and increasing urbanization, floods are considerably affecting urban areas. The concept of urban resilience may be an interesting means of responding to urban flood issues. The objective of this research is to propose a spatial decision support tool based on geovisualization techniques and a resilience assessment method. The goal is to localize the level of resilience modeled in different territories. The methodology proposed consists in integrating three resilience indicators applied to a case study in Avignon (Provence Alpes Côte d'Azur Region, France) and the use of geovisualization techniques: using GIS for data processing and analysis, visualization, mapping and model processing. The methodology integrates decision-making by identifying characteristics capable of improving urban resilience and facilitating its understanding using a visual tool. The results demonstrate the usefulness of modeling resilience using geovisualization techniques to identify the potential for local resilience, integrate local stakeholders into a process of clarifying the concept through the contribution of visualization, and consider easier access to this concept based on data analysis, processing and visualization through the design of maps.


Author(s):  
Stefan Hirschberg ◽  
Roberto Dones ◽  
Peter Burgherr ◽  
Thomas Heck ◽  
Warren Schenler

2010 ◽  
Vol 35 (12) ◽  
pp. 2921-2932 ◽  
Author(s):  
C. Tiba ◽  
A.L.B. Candeias ◽  
N. Fraidenraich ◽  
E.M. de S. Barbosa ◽  
P.B. de Carvalho Neto ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2105 ◽  
Author(s):  
Jan Kazak ◽  
Małgorzata Świąder

The global Sustainable Development Goals influence the implementation of energy development strategies worldwide. However, in order to support local stakeholders in sustainable energy development strategies and climate change adaptation plans and the implementation of policies, there is a need to equip local decision makers with tools enabling the assessment of sustainable energy investments. In order to do so, the aim of this study is to create a novel tool for the assessment of solar radiation (SOLIS) in ArcGIS. The SOLIS tool builds on the existing ArcGIS algorithm by including input data conversion and post-processing of the results. This should expand the group of potential users of solar radiation analyses. The self-filtering tool excludes surfaces that are not suitable for solar energy investments due to geometrical reasons. The reduction of the size of the output data is positive for technical reasons (speed of the calculation and occupied storage place) and for cognitive reasons (reduction of the number of objects necessary to analyse by the user). The SOLIS tool limits the requirement for users to insert three-dimensional (3D) models of roofs (with any geometry) and select solar radiation calculation periods. The highlight of this research is to develop the decision support tool for the assessment of solar radiation, which would reduce the requirements for potential users, in order to promote indicator-based assessments among non-Geographical Information Systems (GIS) specialists.


2020 ◽  
Vol 20 (4) ◽  
pp. 1049-1068 ◽  
Author(s):  
Charlotte Heinzlef ◽  
Vincent Becue ◽  
Damien Serre

Abstract. In the context of climate change and increasing urbanization, floods are considerably affecting urban areas. The concept of urban resilience may be an interesting means of responding to urban flood issues. The objective of this research is to propose a spatial decision support tool based on geovisualization techniques and a resilience assessment method. The goal is to localize the level of resilience modelled in different territories. The methodology proposed consists of integrating three resilience indicators applied to a case study in Avignon (Provence-Alpes-Côte d'Azur region, France) and the use of geovisualization techniques: using GIS for data processing and analysis, visualization, mapping, and model processing. The methodology integrates decision-making by identifying characteristics capable of improving urban resilience and facilitating its understanding using a visual tool. The results demonstrate the usefulness of modelling resilience using geovisualization techniques to identify the potential for local resilience; integrate local stakeholders into a process of clarifying the concept through the contribution of visualization; and consider easier access to this concept based on data analysis, processing and visualization through the design of maps.


Sign in / Sign up

Export Citation Format

Share Document