scholarly journals Plane wave ultrasound imaging using synthetic aperture image reconstruction techniques

2021 ◽  
Author(s):  
Dae-Myoung (Danny) Yang

Ultrasound imaging based on transmitting plane waves (PW) enables ultrafast imaging. Coherent PW compounding ultrasound imaging can reach the image quality of optimal multifocus image. In the image reconstruction, it was assumed that an infinite extent PWs was emitted. In this thesis, we propose a new image reconstruction algorithm – Synthetic-aperture plane-wave (SAPW) imaging – without using this assumption. The SAPW imaging was compared with the PWs imaging in numerical simulations and experimental measurements. The measured RF data in PW imaging was first decoded in the frequency domain using a pseudoinverse algorithm to estimate the RF data Then, SAPW RF data were used to reconstruct images through the standard synthetic transit aperture (STA) method. Main improvements in the image quality of the SAPW imaging in comparison with the PWs imaging are increases in the depth of penetration and the field of view when contrast-to-noise ratio (CNR) was used as a quantitative metric.

2021 ◽  
Author(s):  
Dae-Myoung (Danny) Yang

Ultrasound imaging based on transmitting plane waves (PW) enables ultrafast imaging. Coherent PW compounding ultrasound imaging can reach the image quality of optimal multifocus image. In the image reconstruction, it was assumed that an infinite extent PWs was emitted. In this thesis, we propose a new image reconstruction algorithm – Synthetic-aperture plane-wave (SAPW) imaging – without using this assumption. The SAPW imaging was compared with the PWs imaging in numerical simulations and experimental measurements. The measured RF data in PW imaging was first decoded in the frequency domain using a pseudoinverse algorithm to estimate the RF data Then, SAPW RF data were used to reconstruct images through the standard synthetic transit aperture (STA) method. Main improvements in the image quality of the SAPW imaging in comparison with the PWs imaging are increases in the depth of penetration and the field of view when contrast-to-noise ratio (CNR) was used as a quantitative metric.


2021 ◽  
Author(s):  
Nevetha Yogarajah

Ultrasound imaging based on transmitting plane waves (PW) enables ultrafast imaging. Coherent PW compounding ultrasound imaging can reach the image quality of optimal multifocus image. In the image reconstruction, it was assumed that an infinite extent PWs was emitted. In this thesis, we propose a new image reconstruction algorithm – Synthetic-aperture plane-wave (SAPW) imaging – without using this assumption. The SAPW imaging was compared with the PWs imaging in numerical simulations and experimental measurements. The measured RF data in PW imaging was first decoded in the frequency domain using a pseudoinverse algorithm to estimate the RF data Then, SAPW RF data were used to reconstruct images through the standard synthetic transit aperture (STA) method. Main improvements in the image quality of the SAPW imaging in comparison with the PWs imaging are increases in the depth of penetration and the field of view when contrast-to-noise ratio (CNR) was used as a quantitative metric


2021 ◽  
Author(s):  
Nevetha Yogarajah

Ultrasound imaging based on transmitting plane waves (PW) enables ultrafast imaging. Coherent PW compounding ultrasound imaging can reach the image quality of optimal multifocus image. In the image reconstruction, it was assumed that an infinite extent PWs was emitted. In this thesis, we propose a new image reconstruction algorithm – Synthetic-aperture plane-wave (SAPW) imaging – without using this assumption. The SAPW imaging was compared with the PWs imaging in numerical simulations and experimental measurements. The measured RF data in PW imaging was first decoded in the frequency domain using a pseudoinverse algorithm to estimate the RF data Then, SAPW RF data were used to reconstruct images through the standard synthetic transit aperture (STA) method. Main improvements in the image quality of the SAPW imaging in comparison with the PWs imaging are increases in the depth of penetration and the field of view when contrast-to-noise ratio (CNR) was used as a quantitative metric


Author(s):  
Sven Rothlubbers ◽  
Hannah Strohm ◽  
Klaus Eickel ◽  
Jurgen Jenne ◽  
Vincent Kuhlen ◽  
...  

2016 ◽  
Vol 5 (8) ◽  
pp. 205846011666229 ◽  
Author(s):  
Heloise Barras ◽  
Vincent Dunet ◽  
Anne-Lise Hachulla ◽  
Jochen Grimm ◽  
Catherine Beigelman-Aubry

2020 ◽  
Vol 93 (1110) ◽  
pp. 20190675
Author(s):  
Takuya Ishikawa ◽  
Shigeru Suzuki ◽  
Yoshiaki Katada ◽  
Tomoko Takayanagi ◽  
Rika Fukui ◽  
...  

Objective: The purpose of this study was to evaluate the image quality in virtual monochromatic imaging (VMI) at 40 kilo-electron volts (keV) with three-dimensional iterative image reconstruction (3D-IIR). Methods: A phantom study and clinical study (31 patients) were performed with dual-energy CT (DECT). VMI at 40 keV was obtained and the images were reconstructed using filtered back projection (FBP), 50% adaptive statistical iterative reconstruction (ASiR), and 3D-IIR. We conducted subjective and objective evaluations of the image quality with each reconstruction technique. Results: The image contrast-to-noise ratio and image noise in both the clinical and phantom studies were significantly better with 3D-IIR than with 50% ASiR, and with 50% ASiR than with FBP (all, p < 0.05). The standard deviation and noise power spectra of the reconstructed images decreased in the order of 3D-IIR to 50% ASiR to FBP, while the modulation transfer function was maintained across the three reconstruction techniques. In most subjective evaluations in the clinical study, the image quality was significantly better with 3D-IIR than with 50% ASiR, and with 50% ASiR than with FBP (all, p < 0.001). Regarding the diagnostic acceptability, all images using 3D-IIR were evaluated as being fully or probably acceptable. Conclusions: The quality of VMI at 40 keV is improved by 3D-IIR, which allows the image noise to be reduced and structural details to be maintained. Advances in knowledge: The improvement of the image quality of VMI at 40 keV by 3D-IIR may increase the subjective acceptance in the clinical setting.


Sign in / Sign up

Export Citation Format

Share Document