scholarly journals Seismic design of liquid-containing concrete structures

Author(s):  
Au Lu

The seismic design of structures is a requirement for any places [sic] where earthquake [sic] occurs, and the design is based upon the codes that vary according to the jurisdictions in which the code was developed for. This study introduces and assesses the document ACI 350.3-06 which was developed by the ACI Committee to guide the design of liquid containing structures, and compares to other codes such as ACI 350.3-01 and NZS 3106 of New Zealand Standard. The importance of liquid containing structures cannot be stressed further, as it is apparent in nuclear applications. The failure of tanks could be due to many reasons: 1) Shell buckling, caused by axial compression due to overall bending. 2) Roof damage as a result of sloshing of the upper portion of the containing liquid due to insufficient provision of freeboard. 3) Failure of inlets and outlets due to their inability to accommodate the deformations of the flexible tank. 4) Differential settlement or failure of supporting soil. The pressures resulted from earthquake [sic] can cause catastrophic disaster, and they [sic] are the impulsive and convective mode which exerts pressures on the walls of the tank. The hydrodynamic model used to estimate these pressures in the ACI 350.3-06 document has also adopted earlier works from Housner, Veletsos, and Shivakumar. Throughout the years, the code has transformed tremendously, and this study shows that the codes are very similar in many ways, yet their differences can yield significantly different results. Furthermore, the results from the various codes are illustrated using the same example, and the validity of the results are determined as well. The effects on seismic design due to the types of structure, whether the tank is rigid or flexible, and the support system are also introduced; moreover, their absences and the variations in the estimation of seismic parameters in some codes are also shown to have a large effect on the load estimation.

2021 ◽  
Author(s):  
Au Lu

The seismic design of structures is a requirement for any places [sic] where earthquake [sic] occurs, and the design is based upon the codes that vary according to the jurisdictions in which the code was developed for. This study introduces and assesses the document ACI 350.3-06 which was developed by the ACI Committee to guide the design of liquid containing structures, and compares to other codes such as ACI 350.3-01 and NZS 3106 of New Zealand Standard. The importance of liquid containing structures cannot be stressed further, as it is apparent in nuclear applications. The failure of tanks could be due to many reasons: 1) Shell buckling, caused by axial compression due to overall bending. 2) Roof damage as a result of sloshing of the upper portion of the containing liquid due to insufficient provision of freeboard. 3) Failure of inlets and outlets due to their inability to accommodate the deformations of the flexible tank. 4) Differential settlement or failure of supporting soil. The pressures resulted from earthquake [sic] can cause catastrophic disaster, and they [sic] are the impulsive and convective mode which exerts pressures on the walls of the tank. The hydrodynamic model used to estimate these pressures in the ACI 350.3-06 document has also adopted earlier works from Housner, Veletsos, and Shivakumar. Throughout the years, the code has transformed tremendously, and this study shows that the codes are very similar in many ways, yet their differences can yield significantly different results. Furthermore, the results from the various codes are illustrated using the same example, and the validity of the results are determined as well. The effects on seismic design due to the types of structure, whether the tank is rigid or flexible, and the support system are also introduced; moreover, their absences and the variations in the estimation of seismic parameters in some codes are also shown to have a large effect on the load estimation.


Author(s):  
Caudillo Aguas

This study aims to provide a comparison and identify the key distinctions between the New Zealand Standard – Earthquake Actions (NZS 1170.5: 2004) seismic design spectra and the hysteresis-damped seismic demand spectra specified by either the New Zealand Society for Earthquake Engineering (NZSEE) “Assessment and Improvement of the Structural Performance of Buildings in Earthquakes” (AISPBE) Guidelines, or the “Displacement-Based Seismic Design of Structures” (DBSDS) textbook by Priestley et al. (2007). The damping provided by the draft document, “The Seismic Assessment of Existing Buildings” (TSAEB), was also briefly discussed. The seismic design spectrum was calculated for various levels of ductility using all three methods and compared against each other. This was performed for structural elastic periods from 0.1 to 4.5 seconds. For a given set of requirements based on the NZS 1170.5 parameters, a representative acceleration-displacement hysteresis loop has been generated. The equivalent viscous damping was then calculated based on the area under this hysteresis using the recommendations of either the AISPBE or through the damping equations based on the DBSDS. The final damped spectra were then compared with each other and against the NZS 1170.5 design spectrum. Results indicate good correlation between the NZS 1170.5 design spectra and the damped design spectra at low levels of ductility but show significant disparities at higher levels of ductility.


Author(s):  
I. A. N. Fraser

The paper describes a new loading code for Indonesia developed under the aegis of the New Zealand Bilateral Aid Programme to Indonesia by the executing consultants, under the direction of a NZ Steering Committee and Indonesian Counterpart Team. The paper summarizes the method of zoning, determining lateral load levels, and the assessment of factors relevant to the design loading code such as risk, ground condition, structural types, ductility and the development of the concept of dual documents namely: (a)  a code for use as the bylaw and for more complex structures, and 
 (b)  a manual as a means of compliance with the code for easier design of straightforward buildings complying with one of a 
number of well defined structural types. 



2019 ◽  
pp. 135-178
Author(s):  
Srijit Bandyopadhyay ◽  
M. K. Pradhan ◽  
Raj Banerjee ◽  
V. S. Phanikanth ◽  
S. J. Patil

Author(s):  
A. Momtahan ◽  
R.P. Dhakal ◽  
A. Rieder

Modern seismic design codes, which are based on capacity design concepts, allow formation of plastic hinges in specified locations of a structure. This requires reliable estimation of strength of different components so that the desired hierarchy of strength of the structural components can be ensured to guarantee the formation of plastic hinges in the ductile elements. As strength of longitudinal reinforcing bars governs the strength of reinforced concrete members, strain-ageing, which has significant effect on the strength of reinforcing bars, should be given due consideration in capacity design. Strain-ageing can increase the yield strength of reinforcing steel bars and hence the strength of previously formed plastic hinges, thereby likely to force an unfavourable mechanism (such as strong beam-weak column leading to column hinging) to take place in subsequent earthquakes. In this paper, the strain-ageing effect of commonly used New Zealand reinforcing steel bars is experimentally investigated. Common New Zealand steel reinforcing bars are tested for different levels of pre-strain and different time intervals up to 50 days, and the results are discussed focussing on the extent of strain-ageing and its possible implications on seismic design provisions. The results indicate that designers need to use a higher flexural strength (in addition to overstrength) for the weaker member in checking the strength hierarchy in capacity design of reinforced concrete frames. Similarly, in designing retrofit measures to restore a damaged reinforced concrete member engineers need to take into account an increase of yield strength of the reinforcing steel bars employed in the member due to the strain-ageing phenomenon and the extent of increase in the yield strength depends on the level of damage.


Sign in / Sign up

Export Citation Format

Share Document