scholarly journals 3-D modeling and simulation of crystal growth of GE₀.₉₈ Si₀.₀₂ under the influence of various gravity levels, G-jitter and rotating magnetic field using traveling solvent method

Author(s):  
Mehdi Mohammadi Shemirani

A three-dimensional numerical simulation was conducted to study the effect of a rotating magnetic (RMF) field on the fluid flow, heat transfer and mass transfer in the presence of various gravity levels by utilizing the traveling solvent method (TSM). The presence of the RMF suppressed the buoyancy convection in the GE₀.₉₈ Si₀.₀₂ solution zone in order to get homogeneity with a flat growth interface. It was found that the intensity of the flow at the centre of the crucible decreased at a faster rate compared to the flow near the walls when increasing magnetic field intensity is combined with a certain rotational speed. This behavior created a stable and uniform silicon distribution in the horizontal plane near the growth interface in the terrestrial condition. Different magnetic field intensities for different rotational speeds were examined in both terrestrial and micro-gravity conditions. The effects of residual acceleration, known as G-jitter, on board the International Space Station and European Space Orbiter were also investigated.

2021 ◽  
Author(s):  
Mehdi Mohammadi Shemirani

A three-dimensional numerical simulation was conducted to study the effect of a rotating magnetic (RMF) field on the fluid flow, heat transfer and mass transfer in the presence of various gravity levels by utilizing the traveling solvent method (TSM). The presence of the RMF suppressed the buoyancy convection in the GE₀.₉₈ Si₀.₀₂ solution zone in order to get homogeneity with a flat growth interface. It was found that the intensity of the flow at the centre of the crucible decreased at a faster rate compared to the flow near the walls when increasing magnetic field intensity is combined with a certain rotational speed. This behavior created a stable and uniform silicon distribution in the horizontal plane near the growth interface in the terrestrial condition. Different magnetic field intensities for different rotational speeds were examined in both terrestrial and micro-gravity conditions. The effects of residual acceleration, known as G-jitter, on board the International Space Station and European Space Orbiter were also investigated.


Author(s):  
T. J. Jaber ◽  
M. Z. Saghir

A three-dimensional numerical simulation to study the effect of magnetic field on the fluid flow, heat and mass transfer is investigated. By applying axial and rotating magnetic field (RMF), an attempt was made to suppress the buoyancy convection in the Ge0.98Si0.02 solution zone in order to get homogeneity with flat growth interface. It was found that the intensity of the flow at the centre of the crucible decreased at a faster rate compared to the flow near the walls when increasing axial magnetic field intensity. This behaviour created a stable and uniform silicon distribution in the horizontal plane near the growth interface. Different magnetic field intensities for different rotational speeds (2, 7 and 10 rpm) were examined. The results showed that the RMF has a marked effect on the silicon concentration, changing it from convex to nearly flat when the magnetic field intensity increased.


2021 ◽  
Author(s):  
Leily Abidi

A three dimensional numerical simulation of the effect of an axial magnetic field on the fluid flow, heat and mass transfer within the solvent of GE0.98Si0.02 grown by the travelling solvent method is presented. The full steady state Navier-Stokes equations, as well as the energy, continuity and the mass transport equations, were solved numerically using the finite element technique. It is found that a strong convective flow exists in the solvent, which is known to be undesirable to achieve a uniform crystal. An external axial magnetic field is applied to suppress this convection. By increasing the magnetic induction, it is observed that the intensity of the flow at the centre of the crucible reduces at a faster rate than near the wall. This phenomenon creates a stable and flat growth interface and the silicon distribution in the horizontal plane becomes relatively homocentric. The maximum velocity is found to obey a power law with respect to the Hartmann number Umax Ha⁻⁷/⁴


2021 ◽  
Author(s):  
Leily Abidi

A three dimensional numerical simulation of the effect of an axial magnetic field on the fluid flow, heat and mass transfer within the solvent of GE0.98Si0.02 grown by the travelling solvent method is presented. The full steady state Navier-Stokes equations, as well as the energy, continuity and the mass transport equations, were solved numerically using the finite element technique. It is found that a strong convective flow exists in the solvent, which is known to be undesirable to achieve a uniform crystal. An external axial magnetic field is applied to suppress this convection. By increasing the magnetic induction, it is observed that the intensity of the flow at the centre of the crucible reduces at a faster rate than near the wall. This phenomenon creates a stable and flat growth interface and the silicon distribution in the horizontal plane becomes relatively homocentric. The maximum velocity is found to obey a power law with respect to the Hartmann number Umax Ha⁻⁷/⁴


2021 ◽  
Author(s):  
Tawfiq J Jaber

Three-dimensional modeling of SiGe by the traveling solvent method in the presence of magnetic field and rotating crucible


2021 ◽  
Author(s):  
Tawfiq J Jaber

Three-dimensional modeling of SiGe by the traveling solvent method in the presence of magnetic field and rotating crucible


2002 ◽  
Author(s):  
T. J. Makriyannis ◽  
M. Z. Saghir ◽  
D. Labrie

The traveling solvent method (TSM) is a relatively new and promising technique for the production of high quality semiconductors. TSM has been tested on many alloys producing pure and homogeneous crystals. In the present study the effect of buoyancy convection on the growth of the Si0.15Ge0.85 crystal grown by the traveling solvent method is investigated under different heating conditions. The full Navier-Stokes equations together with the energy and solutal equations were solved numerically using the finite element technique. The model take into consideration the losses of heat by radiation and the use of the phase diagram to determine the silicon concentration at the growth interface. Results revealed a strong convection in the solvent, which in turn is detrimental to the growth uniformity in the crystal rod. Additional numerical results showed that the convective heat transfer significantly influences the solute distribution in the liquid zone and the growth rate increases substantially.


2015 ◽  
Vol 6 (4) ◽  
pp. 367-373 ◽  
Author(s):  
Wang Xiaodong ◽  
Fautrelle Yves ◽  
Moreau René ◽  
Etay Jacqueline ◽  
Bianchi Ana-Maria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document