scholarly journals Flow, heat and mass transfers during solidification under traveling/rotating magnetic field

2015 ◽  
Vol 6 (4) ◽  
pp. 367-373 ◽  
Author(s):  
Wang Xiaodong ◽  
Fautrelle Yves ◽  
Moreau René ◽  
Etay Jacqueline ◽  
Bianchi Ana-Maria ◽  
...  
2021 ◽  
Author(s):  
Mehdi Mohammadi Shemirani

A three-dimensional numerical simulation was conducted to study the effect of a rotating magnetic (RMF) field on the fluid flow, heat transfer and mass transfer in the presence of various gravity levels by utilizing the traveling solvent method (TSM). The presence of the RMF suppressed the buoyancy convection in the GE₀.₉₈ Si₀.₀₂ solution zone in order to get homogeneity with a flat growth interface. It was found that the intensity of the flow at the centre of the crucible decreased at a faster rate compared to the flow near the walls when increasing magnetic field intensity is combined with a certain rotational speed. This behavior created a stable and uniform silicon distribution in the horizontal plane near the growth interface in the terrestrial condition. Different magnetic field intensities for different rotational speeds were examined in both terrestrial and micro-gravity conditions. The effects of residual acceleration, known as G-jitter, on board the International Space Station and European Space Orbiter were also investigated.


Author(s):  
T. J. Jaber ◽  
M. Z. Saghir

A three-dimensional numerical simulation to study the effect of magnetic field on the fluid flow, heat and mass transfer is investigated. By applying axial and rotating magnetic field (RMF), an attempt was made to suppress the buoyancy convection in the Ge0.98Si0.02 solution zone in order to get homogeneity with flat growth interface. It was found that the intensity of the flow at the centre of the crucible decreased at a faster rate compared to the flow near the walls when increasing axial magnetic field intensity. This behaviour created a stable and uniform silicon distribution in the horizontal plane near the growth interface. Different magnetic field intensities for different rotational speeds (2, 7 and 10 rpm) were examined. The results showed that the RMF has a marked effect on the silicon concentration, changing it from convex to nearly flat when the magnetic field intensity increased.


2021 ◽  
Author(s):  
Mehdi Mohammadi Shemirani

A three-dimensional numerical simulation was conducted to study the effect of a rotating magnetic (RMF) field on the fluid flow, heat transfer and mass transfer in the presence of various gravity levels by utilizing the traveling solvent method (TSM). The presence of the RMF suppressed the buoyancy convection in the GE₀.₉₈ Si₀.₀₂ solution zone in order to get homogeneity with a flat growth interface. It was found that the intensity of the flow at the centre of the crucible decreased at a faster rate compared to the flow near the walls when increasing magnetic field intensity is combined with a certain rotational speed. This behavior created a stable and uniform silicon distribution in the horizontal plane near the growth interface in the terrestrial condition. Different magnetic field intensities for different rotational speeds were examined in both terrestrial and micro-gravity conditions. The effects of residual acceleration, known as G-jitter, on board the International Space Station and European Space Orbiter were also investigated.


Author(s):  
О. Karlov ◽  
◽  
I. Kondratenko ◽  
R. Kryshchuk ◽  
A. Rashchepkin ◽  
...  

Author(s):  
Radosław DRozd ◽  
Magdalena Szymańska ◽  
Kuba Hoppe ◽  
Adam Junka ◽  
Karol Fijałkowski

Sign in / Sign up

Export Citation Format

Share Document