scholarly journals Study of single event upsets (SEUS) a survey and analysis

2021 ◽  
Author(s):  
Sheldon Mark Foulds

Over the last few years evolution in electronics technology has led to the shrinkage of electronic circuits. While this has led to the emergence of more powerful computing systems it has also caused a dramatic increase in the occurrence of soft errors and a steady climb in failure in time (FIT) rates. This problem is most prevalent in FPGA based systems which are highly susceptible to radiation induced errors. Depending upon the severity of the problem a number of methods exist to counter these effects including Triple Modular Redundancy (TMR), Error Control Coding (ECC), scrubbing systems etc. The following project presents a simulation of an FPGA based system that employs one of the popular error control code techniques called the Hamming Code. A resulting analysis shows that Hamming Code is able to mitigate the effects of single event upsets (SEUs) but suffers due to a number of limitations.

2021 ◽  
Author(s):  
Sheldon Mark Foulds

Over the last few years evolution in electronics technology has led to the shrinkage of electronic circuits. While this has led to the emergence of more powerful computing systems it has also caused a dramatic increase in the occurrence of soft errors and a steady climb in failure in time (FIT) rates. This problem is most prevalent in FPGA based systems which are highly susceptible to radiation induced errors. Depending upon the severity of the problem a number of methods exist to counter these effects including Triple Modular Redundancy (TMR), Error Control Coding (ECC), scrubbing systems etc. The following project presents a simulation of an FPGA based system that employs one of the popular error control code techniques called the Hamming Code. A resulting analysis shows that Hamming Code is able to mitigate the effects of single event upsets (SEUs) but suffers due to a number of limitations.


2010 ◽  
Author(s):  
Graeme Smecher ◽  
François Aubin ◽  
Oleg Djazovski ◽  
Matt Dobbs ◽  
Gordon Faulkner ◽  
...  

2019 ◽  
Vol 8 ◽  
pp. 265-266
Author(s):  
Federico Fernández ◽  
Juan Fabero ◽  
Hortensia Mecha

En el espacio exterior es frecuente la presencia de partículas de alta energía que no llegan a la tierra debido a la protección que brinda la magnetósfera que lo envuelve, siendo tres las fuentes de radiación: El viento solar, los rayos cósmicos y las partículas atrapadas en el cinturón de Van Allen. El desarrollo tecnológico que envuelve a la fabricación de los circuitos integrados permite que los mismos sean cada vez más densos, es decir mayor concentración de transistores en menor espacio, que los mismos tengan una menor tensión de funcionamiento y mayor frecuencia de operación por lo que el impacto de estas partículas puede producir fallas en su funcionamiento debido a la interacción entre las mismas y los circuitos integrados. Por otro lado es cada vez más creciente la tendencia a utilizar dispositivos reconfigurables en diseños de sistemas digitales de alta complejidad, por sus características únicas de poder ser reconfigurados en tiempo real, es decir, modificar una parte del diseño del circuito sin necesidad de detener el funcionamiento del mismo. Los sistemas electrónicos que funcionan en el espacio como los satélites, misiles guiados, etc. son susceptibles de sufrir el impacto de las partículas cargadas por lo que pueden sufrir daños parciales o permanentes. Estos eventos se denominan SEE (Single Event Effects). Los circuitos digitales deben tener un mecanismo que les permita recuperarse cuando se presente uno de estos eventos. Uno de ellos es utilizar la técnica TMR (Triple Modular Redundancy). Esta técnica consiste en la triplicación de los módulos críticos del sistema, de manera que las salidas de las tres réplicas se someten al escrutinio de un votador, que detecta cualquier discrepancia en el resultado proporcionado por cualquiera de ellas. Si uno de los circuitos es impactado por una partícula cargada se puede reemplazarlo por medio de reconfiguración parcial dinámica por lo que la combinación de técnicas TMR (Triple Modular Redundancy) y reconfiguración parcial dinámica de la FPGA dotará de robustez al sistema electrónico ante la aparición de fallos en un sistema electrónico.


MRS Bulletin ◽  
2003 ◽  
Vol 28 (2) ◽  
pp. 117-120 ◽  
Author(s):  
Robert Baumann

AbstractThe once-ephemeral soft error phenomenon has recently caused considerable concern for manufacturers of advanced silicon technology. Soft errors, if unchecked, now have the potential for inducing a higher failure rate than all of the other reliability-failure mechanisms combined. This article briefly reviews the three dominant radiation mechanisms responsible for soft errors in terrestrial applications and how soft errors are generated by the collection of radiation-induced charge. Scaling trends in the soft error sensitivity of various memory and logic components are presented, along with a consideration of which applications are most likely to require intervention. Some of the mitigation strategies that can be employed to reduce the soft error rate in these devices are also discussed.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 322 ◽  
Author(s):  
Luis Aranda ◽  
Pedro Reviriego ◽  
Juan Maestro

Image processing systems are widely used in space applications, so different radiation-induced malfunctions may occur in the system depending on the device that is implementing the algorithm. SRAM-based FPGAs are commonly used to speed up the image processing algorithm, but then the system could be vulnerable to configuration memory errors caused by single event upsets (SEUs). In those systems, the captured image is streamed pixel by pixel from the camera to the FPGA. Certain local operations such as median or rank filters need to process the image locally instead of pixel by pixel, so some particular pixel caching structures such as line-buffer-based pipelines can be used to accelerate the filtering process. However, an SRAM-based FPGA implementation of these pipelines may have malfunctions due to the mentioned configuration memory errors, so an error mitigation technique is required. In this paper, a novel method to protect line-buffer-based pipelines against SRAM-based FPGA configuration memory errors is presented. Experimental results show that, using our protection technique, considerable savings in terms of FPGA resources can be achieved while maintaining the SEU protection coverage provided by other classic pipeline protection schemes.


Sign in / Sign up

Export Citation Format

Share Document