scholarly journals Modeling of the Lightning Return Stroke Current at a Tall Structure Using the Derivative of the Heidler Function

Author(s):  
Kristofer Bitner

Traditionally tall structures have been modeled as simple lossless transmission lines. This model is inadequate for the CN Tower, which may be modeled as a series of transmission lines with different characteristic impedances resulting in a reflection coefficient at each discontinuity. Analysis shows that these vary significantly and are related to the ratio of the current derivative peak to the current derivative 10%-90% risetime, suggesting that they are frequency dependent. The magnitude of the reflection from the return stroke front, if it does exist, is much smaller that was previously proposed. An alternative approach to modeling, based on modeling the current derivative, is proposed and it is found to provide a better match with the measured waveforms. The CN Tower is modeled as a series of uniform lossless transmission lines and the channel is represented by the MTLL model. The features of the measured magnetic field waveform are well reproduced.

2021 ◽  
Author(s):  
Kristofer Bitner

Traditionally tall structures have been modeled as simple lossless transmission lines. This model is inadequate for the CN Tower, which may be modeled as a series of transmission lines with different characteristic impedances resulting in a reflection coefficient at each discontinuity. Analysis shows that these vary significantly and are related to the ratio of the current derivative peak to the current derivative 10%-90% risetime, suggesting that they are frequency dependent. The magnitude of the reflection from the return stroke front, if it does exist, is much smaller that was previously proposed. An alternative approach to modeling, based on modeling the current derivative, is proposed and it is found to provide a better match with the measured waveforms. The CN Tower is modeled as a series of uniform lossless transmission lines and the channel is represented by the MTLL model. The features of the measured magnetic field waveform are well reproduced.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. R425-R435
Author(s):  
Binpeng Yan ◽  
Shangxu Wang ◽  
Yongzhen Ji ◽  
Xingguo Huang ◽  
Nuno V. da Silva

As an approximation of the spherical-wave reflection coefficient (SRC), the plane-wave reflection coefficient does not fully describe the reflection phenomenon of a seismic wave generated by a point source. The applications of SRC to improve analyses of seismic data have also been studied. However, most of the studies focus on the time-domain SRC and its benefit to using the long-offset information instead of the dependency of SRC on frequency. Consequently, we have investigated and accounted for the frequency-dependent spherical-wave reflection coefficient (FSRC) and analyzed the feasibility of this type of inversion. Our inversion strategy requires a single incident angle using reflection data for inverting the density and velocity ratios, which is distinctly different from conventional inversion methods using amplitude variation with offset. Hence, this investigation provides an alternative approach for estimating media properties in some contexts, especially when the range of aperture of the reflection angles is limited. We apply the FSRC theory to the inversion of noisy synthetic and field data using a heuristic algorithm. The multirealization results of the inversion strategy are consistent with the feasibility analysis and demonstrate the potential of the outlined method for practical application.


2021 ◽  
Author(s):  
Mohammadsadegh Rahimian Emam

The main aim of this PhD work is to advance tall-structure lightning return-stroke current modelling. The Alternative Transients Program (ATP), a version of the Electromagnetic Transients program (EMTP), is used to model the lightning current distribution within a tall structure and the attached lightning channel. The tall structure, namely the CN Tower, is modeled as three or five transmission line sections connected in series. The lightning channel is represented by a transmission line with a continuously expanding length. The presented model takes into account reflections within the tower and within the lightning channel. Locations of reflections, current reflection coefficients and the parameters of the current simulation function are calculated based on the time analysis of the current derivative signal, measured at the tower. The decay parameters of the simulation function are first determined by curve fitting the decaying part of the current obtained from measurement. The other parameters are determined by curve fitting the measured initial current derivative impulse with the derivative of the simulation function, before the arrival of reflections. The simulation results substantially succeeded in reproducing the fine structure of the measured current derivative signal. The model allows for the computation of the lightning current at any point along the current path (the tower and the attached channel), which is required for the calculation of the associated electromagnetic field. Using the three-section model of the tower, the presented return-stroke current model enables the determination of a discrete return-stroke velocity profile, demonstrating that the velocity generally decays with time. Furthermore, based on the five-section model, the proposed approach enables taking into account the existence of upward-connecting leaders, which allowed, for the first time, the determination of upward-connecting leader lengths and return-stroke velocity variation profiles with more details. The return-stroke velocity profile is found to initially increase rapidly with time, reaching a peak, and then decrease less rapidly. The proposed model is also experimentally verified based on the comparison between the computed and measured electromagnetic fields. The simulated electric and magnetic field waveforms are found to reproduce important details of the measured fields, including initial split peaks that appear due to channel-front reflections in the presence of upward-connecting leaders.


2021 ◽  
Author(s):  
Mohammadsadegh Rahimian Emam

The main aim of this PhD work is to advance tall-structure lightning return-stroke current modelling. The Alternative Transients Program (ATP), a version of the Electromagnetic Transients program (EMTP), is used to model the lightning current distribution within a tall structure and the attached lightning channel. The tall structure, namely the CN Tower, is modeled as three or five transmission line sections connected in series. The lightning channel is represented by a transmission line with a continuously expanding length. The presented model takes into account reflections within the tower and within the lightning channel. Locations of reflections, current reflection coefficients and the parameters of the current simulation function are calculated based on the time analysis of the current derivative signal, measured at the tower. The decay parameters of the simulation function are first determined by curve fitting the decaying part of the current obtained from measurement. The other parameters are determined by curve fitting the measured initial current derivative impulse with the derivative of the simulation function, before the arrival of reflections. The simulation results substantially succeeded in reproducing the fine structure of the measured current derivative signal. The model allows for the computation of the lightning current at any point along the current path (the tower and the attached channel), which is required for the calculation of the associated electromagnetic field. Using the three-section model of the tower, the presented return-stroke current model enables the determination of a discrete return-stroke velocity profile, demonstrating that the velocity generally decays with time. Furthermore, based on the five-section model, the proposed approach enables taking into account the existence of upward-connecting leaders, which allowed, for the first time, the determination of upward-connecting leader lengths and return-stroke velocity variation profiles with more details. The return-stroke velocity profile is found to initially increase rapidly with time, reaching a peak, and then decrease less rapidly. The proposed model is also experimentally verified based on the comparison between the computed and measured electromagnetic fields. The simulated electric and magnetic field waveforms are found to reproduce important details of the measured fields, including initial split peaks that appear due to channel-front reflections in the presence of upward-connecting leaders.


2016 ◽  
Vol 2016 (4) ◽  
pp. 8-10 ◽  
Author(s):  
B.I. Kuznetsov ◽  
◽  
A.N. Turenko ◽  
T.B. Nikitina ◽  
A.V. Voloshko ◽  
...  

Author(s):  
N. B. Rubtsova ◽  
A. Y. Tokarskiy

The main problems of overhead and cable transmission lines with voltage >=110 kV electric and magnetic fields general public protection are presented. It is shown that it is necessary to develop regulatory requirements for these lines’ sanitary protection zones organization, taking into account the magnetic field component, because its possible health risk factor, up to carcinogenic.


2014 ◽  
Vol 89 (15) ◽  
Author(s):  
C. P. Moca ◽  
P. Simon ◽  
Chung-Hou Chung ◽  
G. Zaránd

Sign in / Sign up

Export Citation Format

Share Document