scholarly journals Nonlinear Estimation for Autonomous Optical Navigation

2021 ◽  
Author(s):  
Stefan Hallgrimson

Many interplanetary mission concepts can benefit from autonomous orbit estimation, particularly during critical mission phases. Previous studies have examined the feasibility of optical navigation using nanosatellite class instruments. While promising, these techniques are not without drawbacks. Convergence of the navigation estimates are often sensitive to errors in initial state estimates. This thesis compares various methods to perform nonlinear estimation for autonomous optical navigation. These methods include an extended Kalman filter (EKF), an unscented Kalman filter (UKF), a particle filter (PF), a fixed-lag smoother (FLS), and moving horizon estimation (MHE). The EKF, UKF, and PF can be implemented in real time, while the FLS and MHE implement a delay into the estimation process. To compare the performance of each state estimator three initial reference scenarios around Mars were considered: a hyperbolic flyby, an elliptic orbit and a orbital maneuver using observations of Mars and its moons. Parameter estimation was also explored, where the mass of Mars was to be estimated as a reference parameter in both the hyperbolic and elliptical trajectories. One last reference scenario included a low Earth orbit (LEO) using observations of satellites in a geosynchronous equatorial orbit. In each case, the FLS and MHE showed similar or better performance over each state estimator but at the cost of an increased computation time with respect to the reference EKF. Similarly the UKF was able to provide improved results withe respect to the EKF. While, the PF provided poor estimates in the Mars trajectories but improvements were seen from the UKF and EKF in the LEO scenario.

2021 ◽  
Author(s):  
Stefan Hallgrimson

Many interplanetary mission concepts can benefit from autonomous orbit estimation, particularly during critical mission phases. Previous studies have examined the feasibility of optical navigation using nanosatellite class instruments. While promising, these techniques are not without drawbacks. Convergence of the navigation estimates are often sensitive to errors in initial state estimates. This thesis compares various methods to perform nonlinear estimation for autonomous optical navigation. These methods include an extended Kalman filter (EKF), an unscented Kalman filter (UKF), a particle filter (PF), a fixed-lag smoother (FLS), and moving horizon estimation (MHE). The EKF, UKF, and PF can be implemented in real time, while the FLS and MHE implement a delay into the estimation process. To compare the performance of each state estimator three initial reference scenarios around Mars were considered: a hyperbolic flyby, an elliptic orbit and a orbital maneuver using observations of Mars and its moons. Parameter estimation was also explored, where the mass of Mars was to be estimated as a reference parameter in both the hyperbolic and elliptical trajectories. One last reference scenario included a low Earth orbit (LEO) using observations of satellites in a geosynchronous equatorial orbit. In each case, the FLS and MHE showed similar or better performance over each state estimator but at the cost of an increased computation time with respect to the reference EKF. Similarly the UKF was able to provide improved results withe respect to the EKF. While, the PF provided poor estimates in the Mars trajectories but improvements were seen from the UKF and EKF in the LEO scenario.


2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Shijoh Vellayikot ◽  
M. V. Vaidyan

A novel artificial neural network based state estimator has been proposed to ensure the robustness in the state estimation of autonomous switching hybrid systems under various uncertainties. Taking the autonomous switching three-tank system as benchmark hybrid model working under various additive and multiplicative uncertainties such as process noise, measurement error, process–model parameter variation, initial state mismatch, and hand valve faults, real-time performance evaluation by the comparison of it with other state estimators such as extended Kalman filter and unscented Kalman Filter was carried out. The experimental results reported with the proposed approach show considerable improvement in the robustness in performance under the considered uncertainties.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ho-Nien Shou

This paper represents orbit propagation and determination of low Earth orbit (LEO) satellites. Satellite global positioning system (GPS) configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP). The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF) method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF). As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.


2012 ◽  
Vol 225 ◽  
pp. 417-422 ◽  
Author(s):  
Maryam Kiani ◽  
Seid H. Pourtakdoust

This paper deals with attitude determination, parameter identification and reference sensor calibration simultaneously. A LEO satellite’s attitude, inertia tensor as well as calibration of Three-Axis-Magnetometer (TAM) are estimated during a maneuver designed to satisfy persistency of excitation condition. For this purpose, kinematic and kinetic state equations of spacecraft motion are augmented for the determination of inertia tensor and TAM calibration parameters including scale factors, misalignments and biases along three body axes. Attitude determination is a nonlinear estimation problem. Unscented Kalman Filter (UKF) as an advanced nonlinear estimation algorithm with good performance can be used to estimate satellite attitude but its computational cost is considerably larger than the widespread, low accuracy, Extended Kalman Filter (EKF). Reduced Sigma Points Filters provide good solutions and also decrease run time of UKF. However, in contrast to nonlinear problem of attitude determination, parameter identification and sensor calibration have linear dynamics. Therefore, a new Marginal UKF (MUKF) is proposed that combines the utility of Kalman Filter with Modified UKF (MMUKF). The proposed MMUKF utilizes only 14 sigma points to achieve the complete 25-dimensional state vector estimation. Additionally, a Monte Carlo simulation has demonstrated a good accuracy for concurrent estimation of attitude, inertia tensor as well as TAM calibration parameters in significantly less time with respect to sole utilization of the UKF.


2022 ◽  
Author(s):  
Philip P Graybill ◽  
Bruce J. Gluckman ◽  
Mehdi Kiani

The unscented Kalman filter (UKF) is finding increased application in biological fields. While realizing a complex UKF system in a low-power embedded platform offers many potential benefits including wearability, it also poses significant design challenges. Here we present a method for optimizing a UKF system for realization in an embedded platform. The method seeks to minimize both computation time and error in UKF state reconstruction and forecasting. As a case study, we applied the method to a model for the rat sleep-wake regulatory system in which 432 variants of the UKF over six different variables are considered. The optimization method is divided into three stages that assess computation time, state forecast error, and state reconstruction error. We apply a cost function to variants that pass all three stages to identify a variant that computes 27 times faster than the reference variant and maintains required levels of state estimation and forecasting accuracy. We draw the following insights: 1) process noise provides leeway for simplifying the model and its integration in ways that speed computation time while maintaining state forecasting accuracy, 2) the assimilation of observed data during the UKF correction step provides leeway for simplifying the UKF structure in ways that speed computation time while maintaining state reconstruction accuracy, and 3) the optimization process can be accelerated by decoupling variables that directly impact the underlying model from variables that impact the UKF structure.


2019 ◽  
Vol 7 (4) ◽  
pp. 1626
Author(s):  
Ahmed Abdulmahdi Abdulkareem Alawsi ◽  
Basil H Jasim ◽  
Safanah Mudheher Raafat

Sign in / Sign up

Export Citation Format

Share Document