scholarly journals Image Denoising in Spatial and Transform Domains

Author(s):  
Mina Sharifymoghaddam

Image denoising is an inseparable pre-processing step of many image processing algorithms. Two mostly used image denoising algorithms are Nonlocal Means (NLM) and Block Matching and 3D Transform Domain Collaborative Filtering (BM3D). While BM3D outperforms NLM on variety of natural images, NLM is usually preferred when the algorithm complexity is an issue. In this thesis, we suggest modified version of these two methods that improve the performance of the original approaches. The conventional NLM uses weighted version of all patches in a search neighbourhood to denoise the center patch. However, it can include some dissimilar patches. Our first contribution, denoted by Similarity Validation Based Nonlocal Means (NLM-SVB), eliminates some of those unnecessary dissimilar patches in order to improve the performance of the algorithm. We propose a hard thresholding pre-processing step based on the exact distribution of distances of similar patches. Consequently, our method eliminates about 60% of dissimilar patches and improves NLM in terms of Peak Signal to Noise Ratio (PSNR) and Stracuteral Similarity Index Measure (SSIM). Our second contribution, denoted by Probabilistic Weighting BM3D (PW-BM3D), is the result of our thorough study of BM3D. BM3D consists of two main steps. One is finding a basic estimate of the noiseless image by hard thresholding coefficients. The second one is using this estimate to perform wiener filtering. In both steps the weighting scheme in the aggregation process plays an important role. The current weighting process depends on the variance of retrieved coefficients after denoising which results in a biased weighting. In PW-BM3D, we propose a novel probabilistic weighting scheme which is a function of the probability of similarity of noiseless patches in each 3D group. The results show improvement over BM3D in terms of PSNR for an average of about 0.2dB.

2021 ◽  
Author(s):  
Mina Sharifymoghaddam

Image denoising is an inseparable pre-processing step of many image processing algorithms. Two mostly used image denoising algorithms are Nonlocal Means (NLM) and Block Matching and 3D Transform Domain Collaborative Filtering (BM3D). While BM3D outperforms NLM on variety of natural images, NLM is usually preferred when the algorithm complexity is an issue. In this thesis, we suggest modified version of these two methods that improve the performance of the original approaches. The conventional NLM uses weighted version of all patches in a search neighbourhood to denoise the center patch. However, it can include some dissimilar patches. Our first contribution, denoted by Similarity Validation Based Nonlocal Means (NLM-SVB), eliminates some of those unnecessary dissimilar patches in order to improve the performance of the algorithm. We propose a hard thresholding pre-processing step based on the exact distribution of distances of similar patches. Consequently, our method eliminates about 60% of dissimilar patches and improves NLM in terms of Peak Signal to Noise Ratio (PSNR) and Stracuteral Similarity Index Measure (SSIM). Our second contribution, denoted by Probabilistic Weighting BM3D (PW-BM3D), is the result of our thorough study of BM3D. BM3D consists of two main steps. One is finding a basic estimate of the noiseless image by hard thresholding coefficients. The second one is using this estimate to perform wiener filtering. In both steps the weighting scheme in the aggregation process plays an important role. The current weighting process depends on the variance of retrieved coefficients after denoising which results in a biased weighting. In PW-BM3D, we propose a novel probabilistic weighting scheme which is a function of the probability of similarity of noiseless patches in each 3D group. The results show improvement over BM3D in terms of PSNR for an average of about 0.2dB.


2016 ◽  
Vol 16 (5) ◽  
pp. 109-118
Author(s):  
Xiaolu Xie

Abstract In this paper we propose a new approach for image denoising based on the combination of PM model, isotropic diffusion model, and TV model. To emphasize the superiority of the proposed model, we have used the Structural Similarity Index Measure (SSIM) and Peak Signal to Noise Ratio (PSNR) as the subjective criterion. Numerical experiments with different images show that our algorithm has the highest PSNR and SS1M, as well as the best visual quality among the six algorithms. Experimental results confirm the high performance of the proposed model compared with some well-known algorithms. In a word, the new model outperforms the mentioned three well known algorithms in reducing the Gibbs-type artifacts, edges blurring, and the block effect, simultaneously.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yongzhao Zhang ◽  
Jianshi Yin ◽  
Han Yan ◽  
Jun Liu ◽  
Junsheng Wang

This work was aimed to explore the application of the L2-block-matching and 3-dimentional filtering (BM3D) (L2-BM3D) denoising algorithm in the treatment of lumbar degeneration with long- and short-segment fixation of posterior decompression. 120 patients with degenerative lumbar scoliosis were randomly divided into group A (MRI images were not processed), group B (MRI images were processed by the BM3D denoising algorithm), and group C (MRI images were processed by the BM3D denoising algorithm based on weighted norm L2). This denoising algorithm was comprehensively evaluated in terms of mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and running time. Besides, the results of surgeries based on different denoising methods were assessed through the surgical time, intraoperative blood loss, postoperative drainage, and postoperative follow-up. The results showed the following: (1) PSNR (peak signal-to-noise ratio) and SSIM (structural similarity index measure) of the L2-BM3D algorithm are better than those of the BM3D algorithm (31.21 dB versus 29.33 dB, 0.83 versus 0.72), while mean square error (MSE) was less than that of the BM3D algorithm ( P < 0.05 ). (2) The operation time, intraoperative bleeding, and postoperative drainage volume in group C were lower than those in group B and group A ( P < 0.05 ). The postoperative follow-up results showed that, in group C, the postoperative VAS (visual analysis scale) score (1.03 ± 0.29) and ODI (Oswestry disability index) (9.29 ± 0.32) were lower, indicating that the postoperative recovery effect of patients was better. Therefore, the patient’s postoperative recovery effect was better. In conclusion, the L2-BM3D algorithm had an ideal denoising effect on MRI images of lumbar degeneration and was worthy of clinical promotion.


Author(s):  
Maryam Abedini ◽  
Horriyeh Haddad ◽  
Marzieh Faridi Masouleh ◽  
Asadollah Shahbahrami

This study proposes an image denoising algorithm based on sparse representation and Principal Component Analysis (PCA). The proposed algorithm includes the following steps. First, the noisy image is divided into overlapped [Formula: see text] blocks. Second, the discrete cosine transform is applied as a dictionary for the sparse representation of the vectors created by the overlapped blocks. To calculate the sparse vector, the orthogonal matching pursuit algorithm is used. Then, the dictionary is updated by means of the PCA algorithm to achieve the sparsest representation of vectors. Since the signal energy, unlike the noise energy, is concentrated on a small dataset by transforming into the PCA domain, the signal and noise can be well distinguished. The proposed algorithm was implemented in a MATLAB environment and its performance was evaluated on some standard grayscale images under different levels of standard deviations of white Gaussian noise by means of peak signal-to-noise ratio, structural similarity indexes, and visual effects. The experimental results demonstrate that the proposed denoising algorithm achieves significant improvement compared to dual-tree complex discrete wavelet transform and K-singular value decomposition image denoising methods. It also obtains competitive results with the block-matching and 3D filtering method, which is the current state-of-the-art for image denoising.


Author(s):  
Liqiong Zhang ◽  
Min Li ◽  
Xiaohua Qiu

To overcome the “staircase effect” while preserving the structural information such as image edges and textures quickly and effectively, we propose a compensating total variation image denoising model combining L1 and L2 norm. A new compensating regular term is designed, which can perform anisotropic and isotropic diffusion in image denoising, thus making up for insufficient diffusion in the total variation model. The algorithm first uses local standard deviation to distinguish neighborhood types. Then, the anisotropic diffusion based on L1 norm plays the role of edge protection in the strong edge region. The anisotropic and the isotropic diffusion simultaneously exist in the smooth region, so that the weak textures can be protected while overcoming the “staircase effect” effectively. The simulation experiments show that this method can effectively improve the peak signal-to-noise ratio and obtain the higher structural similarity index and the shorter running time.


Author(s):  
Cuizhen Wang ◽  
Zhenxue Chen ◽  
Yan Wang ◽  
Zhifeng Wang

Three-dimensional reconstruction of teeth plays an important role in the operation of living dental implants. However, the tissue around teeth and the noise generated in the process of image acquisition bring a serious impact on the reconstruction results, which must be reduced or eliminated. Combined with the advantages of wavelet transform and bilateral filtering, this paper proposes an image denoising method based on the above methods. The method proposed in this paper not only removes the noise but also preserves the image edge details. The noise in high frequency subbands is denoised using a locally adaptive thresholding and the noise in low frequency subbands is filtered by the bilateral filtering. Peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and 3D reconstruction using the iso-surface extraction method are used to evaluate the denoising effect. The experimental results show that the proposed method is better than the wavelet denoising and bilateral filtering, and the reconstruction results meet the requirements of clinical diagnosis.


2019 ◽  
pp. 22-28
Author(s):  
Suzan J Obaiys ◽  
Hamid A Jalab ◽  
Rabha W Ibrahim

The use of local fractional calculus has increased in different applications of image processing. This study proposes a new algorithm for image denoising to remove Gaussian noise in digital images. The proposed algorithm is based on local fractional integral of Chebyshev polynomials. The proposed structures of the local fractional windows are obtained by four masks created for x and y directions. On four directions, a convolution product of the input image pixels with the local fractional mask window has been performed. The visual perception and peak signal-to-noise ratio (PSNR) with the structural similarity index (SSIM) are used as image quality measurements. The experiments proved that the accomplished filtering results are better than the Gaussian filter. Keywords: local fractional; Chebyshev polynomials; Image denoising


2020 ◽  
Vol 9 (4) ◽  
pp. 1461-1467
Author(s):  
Indrarini Dyah Irawati ◽  
Sugondo Hadiyoso ◽  
Yuli Sun Hariyani

In this study, we proposed compressive sampling for MRI reconstruction based on sparse representation using multi-wavelet transformation. Comparing the performance of wavelet decomposition level, which are Level 1, Level 2, Level 3, and Level 4. We used gaussian random process to generate measurement matrix. The algorithm used to reconstruct the image is . The experimental results showed that the use of wavelet multi-level can generate higher compression ratio but requires a longer processing time. MRI reconstruction results based on the parameters of the peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM) show that the higher the level of decomposition in wavelets, the value of both decreases.


2020 ◽  
Vol 10 (10) ◽  
pp. 2490-2500
Author(s):  
Sadaf Zahid Mahmood ◽  
Humaira Afzal ◽  
Muhammad Rafiq Mufti ◽  
Nadeem Akhtar ◽  
Asad Habib ◽  
...  

The demand of accurate and visually fair images is increasing with the passage of time and bang of the number of digital images especially in the domain of medical and healthcare systems. The visual image quality of modern cameras affected due to edges, textures and sharp structures noise. Though research community has introduced several techniques such as BM3D (Block Matching and 3D) for image denoising. However, edges and texture preservation capabilities remain issues due to hard thresholds values and captured image diversity. In order to address these issues, we propose a new variant of BM3D namely BM3DMA (Block Matching and 3D with Mahalanobis and Adaptive filter) which is employed through the use of Mahalanobis distance measure (for diversity coverage) and adaptive filter (for soft thresholds). We used two widely known datasets consist of set of standard and medical images. We observe 5% to 10% enhancement in the performance of BM3DMA as compared to BM3D in terms of improving the PSNR (Peak Signal to Noise Ratio) value. The promising experimental result indicates the effectiveness of BM3DMA in terms preserving the edge and texture image noise.


Sign in / Sign up

Export Citation Format

Share Document