scholarly journals Development of innovative designs of bridge barrier system incorporating reinforcing steel or GFRP bars

Author(s):  
Hamidreza Khederzadeh

In harsh environment, corrosion of steel reinforcement causes durability problems. Glass Fiber Reinforced Polymer (GFRP) has emerged as an alternative to corrosion-related problem of steel bars in development of sustainable bridge deck and barrier walls. The current research program has been divided into five phases. In phase I, an extensive study has been conducted on pullout strength and bond behavior of pre-installed GFRP bars into concrete slabs and concrete cubes. In phase II, based on the Canadian Highway Bridge Design Code (CHBDC) factored applied moment at deck-wall junction, three configurations of GFRP-reinforced barrier detailing, using High-Modulus (HM) and Standard-Modulus (SM) GRFP bars, were proposed. The proposed barriers were tested by constructing five actual-size, 1.0-m long, PL-3 barrier models to determine their ultimate load carrying capacities and failure modes. In phase III, a full-scale PL-3 barrier made of GFRP-HM bars, with headed-end anchors as connecting bars to the deck slab, was constructed and tested under transverse static loading at both interior and exterior locations to-collapse to determine its crack pattern, failure mode and static ultimate load carrying capacity. In phase IV, from the trapezoidal failure pattern observed during testing the GFRP-reinforced PL-3 barriers, the research program was extended to revisit the triangular yield-line failure patterns in steel-reinforced PL-2 and PL-3 barriers specified in AASHTO-LRFD specifications. Experimental static tests to-collapse were conducted on constructed actual-size PL-2 and PL-3 steel-reinforced barriers, leading to more accurate expressions for their transverse load capacities developed based on the yield-line theory. In phase V, non-linear finite element analysis was conducted on GFRP-reinforced bridge barriers tested in phase III. The finite-element modeling was conducted to solely simulate the experimental test results for future research. A good agreement between experimental observations and numerical finite-element modeling was observed. Finally, this research led to (i) a more accurate design procedure for the GFRP - and steel-reinforced barrier wall and the barrier-deck joint, and (ii) design tables for the applied moment and tensile forces to be used to design the deck slab and the barrier deck-junction to resist transverse loading resulting from vehicle impact.

2021 ◽  
Author(s):  
Hamidreza Khederzadeh

In harsh environment, corrosion of steel reinforcement causes durability problems. Glass Fiber Reinforced Polymer (GFRP) has emerged as an alternative to corrosion-related problem of steel bars in development of sustainable bridge deck and barrier walls. The current research program has been divided into five phases. In phase I, an extensive study has been conducted on pullout strength and bond behavior of pre-installed GFRP bars into concrete slabs and concrete cubes. In phase II, based on the Canadian Highway Bridge Design Code (CHBDC) factored applied moment at deck-wall junction, three configurations of GFRP-reinforced barrier detailing, using High-Modulus (HM) and Standard-Modulus (SM) GRFP bars, were proposed. The proposed barriers were tested by constructing five actual-size, 1.0-m long, PL-3 barrier models to determine their ultimate load carrying capacities and failure modes. In phase III, a full-scale PL-3 barrier made of GFRP-HM bars, with headed-end anchors as connecting bars to the deck slab, was constructed and tested under transverse static loading at both interior and exterior locations to-collapse to determine its crack pattern, failure mode and static ultimate load carrying capacity. In phase IV, from the trapezoidal failure pattern observed during testing the GFRP-reinforced PL-3 barriers, the research program was extended to revisit the triangular yield-line failure patterns in steel-reinforced PL-2 and PL-3 barriers specified in AASHTO-LRFD specifications. Experimental static tests to-collapse were conducted on constructed actual-size PL-2 and PL-3 steel-reinforced barriers, leading to more accurate expressions for their transverse load capacities developed based on the yield-line theory. In phase V, non-linear finite element analysis was conducted on GFRP-reinforced bridge barriers tested in phase III. The finite-element modeling was conducted to solely simulate the experimental test results for future research. A good agreement between experimental observations and numerical finite-element modeling was observed. Finally, this research led to (i) a more accurate design procedure for the GFRP - and steel-reinforced barrier wall and the barrier-deck joint, and (ii) design tables for the applied moment and tensile forces to be used to design the deck slab and the barrier deck-junction to resist transverse loading resulting from vehicle impact.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Huazhang Zhou ◽  
Xiaoqiang Zhou

According to the facts of localized crushing failure of bolt groove in wood connection with enough end distance and the three-phase composites of wood with solid (wood substance), water, and gas, a confined compression test for the wood cylinder was conducted for achieving constitutive relation under the complex stress state in wood groove. A porous constitutive model was developed according to the confined compression experiments. Then, the constitutive model was implemented in a finite element modeling of mental dowel-type fasters in wood-to-wood connections to analyse the load-carrying capacity parallel to the grain. Through changing the thicknesses of centre members and side members of wood connections made of a similar wood species, Pinus Sylvestris var. Mongolica, the effects of thickness combinations of centre members and side members on the failure modes and load-carrying capacity of bolted wood connection including numerical simulations and experiments were compared. The failure modes, including the yielding of centre member, the yielding of side member, and the yielding of the bolt, as well as the rigid rotation of the bolt, all reappeared by the finite element modeling with the porous constitutive model. The predicted deformation shapes and load-displacement relations of bolted wood connections were compared with experimental ones, and good correlations were observed. This paper presents a new approach to simulate the local embedment crushing of bolt groove in wood connections.


2016 ◽  
Vol 673 ◽  
pp. 75-81
Author(s):  
Mohd Isa Jaffar ◽  
Wan Hamidon Wan Badaruzzaman ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Sharizan Baharom

Profiled steel sheeting dry board (PSSDB) system is made of profiled steel sheeting that is connected to the dry board using a self-drilling, self-tapping screw. This study aims to predicts the load-deflection behavior of PSSDB panel system under the influence of geopolymer concrete infill with finite element modeling. To achieve the target objective, the laboratory testing approach and a theoretical system behavior prediction are considered. Through a bending test, the stiffness of PSSDB full board with geopolymer concrete infill (FBGPC) panel is 27.42 kNm2 and the ultimate load is 13.13 kN/m2. The developed finite-element modeling (FEM) successfully predicts the behavior of PSSDB with geopolymer concrete infill panel with >85% accuracy.


1991 ◽  
Vol 3 (1) ◽  
pp. 235-253 ◽  
Author(s):  
L. D. Philipp ◽  
Q. H. Nguyen ◽  
D. D. Derkacht ◽  
D. J. Lynch ◽  
A. Mahmood

1993 ◽  
Vol 21 (1) ◽  
pp. 23-39 ◽  
Author(s):  
R. W. Scavuzzo ◽  
T. R. Richards ◽  
L. T. Charek

Abstract Tire vibration modes are known to play a key role in vehicle ride, for applications ranging from passenger cars to earthmover equipment. Inputs to the tire such as discrete impacts (harshness), rough road surfaces, tire nonuniformities, and tread patterns can potentially excite tire vibration modes. Many parameters affect the frequency of tire vibration modes: tire size, tire construction, inflation pressure, and operating conditions such as speed, load, and temperature. This paper discusses the influence of these parameters on tire vibration modes and describes how these tire modes influence vehicle ride quality. Results from both finite element modeling and modal testing are discussed.


Sign in / Sign up

Export Citation Format

Share Document