scholarly journals Imam Safii Heart Disease Classification using Gain Ratio Feature Selection with Hidden Layer Modification in Extreme Learning Machine

2021 ◽  
Vol 2 (02) ◽  
pp. 71-76
Author(s):  
Imam Safii ◽  
Made Kamisutara ◽  
Tresna Maulana Faahrudin

Heart disease is a non-communicable disease that causes a high mortality rate and is still a problem both in developed and developing countries. This disease often occurs because of the narrowing of blood vessels which causes the functioning of the heart is disturbed. The number of cases of heart disease in Indonesia is still quite high, making medical staff require a fairly in diagnosing the patient's conditional. The research proposed to implement Gain Ratio in selecting the most important feature that influences heart disease and building the classification models based on the modification of hidden layer weight on Extreme Learning Machine. The research collected the heart disease dataset which was obtained from Kaggle UCI Machine Learning consist of 1.025 samples, 14 attributes, and 2 labels. The data preprocessing include using data cleaning and normalization to find out dirty data or missing values. The experiment reported that Gain Ratio succeeds to generate the attribute ranking of heart disease dataset, then Gain Ratio score was added to the weighting of the hidden layer input on learning methods. The research used various validation sampling using the splitting test between training data and testing such as 70:30, 80:20, 90:10%, and set up 1500 hidden layers. The accuracy average performance of Extreme Learning Machine with modification using Gain Ratio reached 100% for the training phase and 97.67% for the testing phase.   Keyword: Heart Disease, Gain Ratio, Modification, Classification, Extreme Learning Machine

2017 ◽  
Vol 26 (1) ◽  
pp. 185-195 ◽  
Author(s):  
Jie Wang ◽  
Liangjian Cai ◽  
Xin Zhao

AbstractAs we are usually confronted with a large instance space for real-word data sets, it is significant to develop a useful and efficient multiple-instance learning (MIL) algorithm. MIL, where training data are prepared in the form of labeled bags rather than labeled instances, is a variant of supervised learning. This paper presents a novel MIL algorithm for an extreme learning machine called MI-ELM. A radial basis kernel extreme learning machine is adapted to approach the MIL problem using Hausdorff distance to measure the distance between the bags. The clusters in the hidden layer are composed of bags that are randomly generated. Because we do not need to tune the parameters for the hidden layer, MI-ELM can learn very fast. The experimental results on classifications and multiple-instance regression data sets demonstrate that the MI-ELM is useful and efficient as compared to the state-of-the-art algorithms.


2015 ◽  
Vol 24 (1) ◽  
pp. 135-143 ◽  
Author(s):  
Omer F. Alcin ◽  
Abdulkadir Sengur ◽  
Jiang Qian ◽  
Melih C. Ince

AbstractExtreme learning machine (ELM) is a recent scheme for single hidden layer feed forward networks (SLFNs). It has attracted much interest in the machine intelligence and pattern recognition fields with numerous real-world applications. The ELM structure has several advantages, such as its adaptability to various problems with a rapid learning rate and low computational cost. However, it has shortcomings in the following aspects. First, it suffers from the irrelevant variables in the input data set. Second, choosing the optimal number of neurons in the hidden layer is not well defined. In case the hidden nodes are greater than the training data, the ELM may encounter the singularity problem, and its solution may become unstable. To overcome these limitations, several methods have been proposed within the regularization framework. In this article, we considered a greedy method for sparse approximation of the output weight vector of the ELM network. More specifically, the orthogonal matching pursuit (OMP) algorithm is embedded to the ELM. This new technique is named OMP-ELM. OMP-ELM has several advantages over regularized ELM methods, such as lower complexity and immunity to the singularity problem. Experimental works on nine commonly used regression problems indicate that the investigated OMP-ELM method confirms these advantages. Moreover, OMP-ELM is compared with the ELM method, the regularized ELM scheme, and artificial neural networks.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fei Gao ◽  
Jiangang Lv

Single-Stage Extreme Learning Machine (SS-ELM) is presented to dispose of the mechanical fault diagnosis in this paper. Based on it, the traditional mapping type of extreme learning machine (ELM) has been changed and the eigenvectors extracted from signal processing methods are directly regarded as outputs of the network’s hidden layer. Then the uncertainty that training data transformed from the input space to the ELM feature space with the ELM mapping and problem of the selection of the hidden nodes are avoided effectively. The experiment results of diesel engine fault diagnosis show good performance of the SS-ELM algorithm.


2016 ◽  
Vol 58 ◽  
pp. 03010
Author(s):  
Fetty Tri Anggraeny ◽  
Intan Yuniar Purbasari

Author(s):  
Delia Putri Fardani ◽  
Eto Wuryanto ◽  
Indah Werdiningsih

Abstrak— Penelitian ini bertujuan merancang dan membangun sistem pendukung keputusan untuk meramalkan jumlah kunjungan pasien RSU Dr. Wahidin Sudiro Husodo Kota Mojokerto dengan menggunakan metode Extreme Learning Machine (ELM). Dengan adanya  sistem pendukung keputusan ini direktur Rumah Sakit dapat meramalkan jumlah kunjungan pasien dan membantu dalam pembuatan kebijakan rumah sakit, mengatur sumber daya manusia dan keuangan, serta mendistribusikan sumber daya material dengan benar khususnya pada poli gigi. Dalam rancang bangun sistem pendukung keputusan ini dilakukan dalam beberapa tahap. Tahap yang pertama, pengumpulan data untuk mengidentifikasi inputan yang dibutuhkan dalam penghitungan metode ELM. Tahap kedua, pengolahan data, data dibagi menjadi data training dan data testing dengan komposisi data training sebanyak 80% (463 data) dari total 579 data dan 20% (116 data) sisanya sebagai data testing yang kemudian di normalisasi. Tahap ketiga, peramalan jumlah kunjungan pasien menggunakan metode ELM. Tahap terakhir, perancangan sistem menggunakan sysflow dan pembangunan sistem berbasis desktop serta evaluasi sistem. Hasil penelitian berupa aplikasi sistem pendukung keputusan untuk meramalkan jumlah kunjungan pasien. Dan melalui uji coba menggunakan 116 data testing berdasarkan fungsi aktivasi sigmoid biner dengan jumlah hidden layer sebanyak 7 unit dan Epoch 500 diperoleh hasil optimal MSE sebesar 0.027 Kata Kunci— Sistem Pendukung Keputusan, Peramalan, Jaringan Syaraf Tiruan, Extreme Learning MachineAbstract— In this research, a decision support system to predict the number of patients visit RSU Dr. Wahidin Sudiro Husodo Kota Mojokerto was designed and developed using Extreme Learning Machine (ELM) method which aims to assist director in making decision for the hospital, managing human and financial resource, as well as distributing material resource properly especially in the Department of Dentistry. The design of this decision support system to predict the number of patients visit with ELM method is divided into several stages. The first stage is to identify the input data collection needed in the calculation method of ELM. The next stage is processing the data; the data is divided into training data and testing data and then normalized, in which training data is 80% (452 data) and testing 579 data 20% (116 data). The third stage is problem solving using ELM. The last stage is the design and development of systems using sysflow and desktop-based system that includes the implementation and evaluation of the system. The result of this research is an application of decision supporting system to predict number of patients. By using 116 testing data based on the binary sigmoid activation function using 7 units of hidden layer and 500 Epoch then Optimal MSE value that was obtained is 0.027. Keywords— Decision Supporting System, Prediction, Artificial Neural Network, Extreme Learning Machine


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Xiao-Li Li ◽  
Chao Jia ◽  
De-xin Liu ◽  
Da-wei Ding

As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine) neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine) neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control) will be used to improve the control performance. Simulation results are included to complement the theoretical results.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 609 ◽  
Author(s):  
Fan Zhang ◽  
Jiabin Liu ◽  
Bo Wang ◽  
Zhiquan Qi ◽  
Yong Shi

Learning from label proportions (LLP) is a new kind of learning problem which has attracted wide interest in machine learning. Different from the well-known supervised learning, the training data of LLP is in the form of bags and only the proportion of each class in each bag is available. Actually, many modern applications can be successfully abstracted to this problem such as modeling voting behaviors and spam filtering. However, time-consuming training is still a challenge for LLP, which becomes a bottleneck especially when addressing large bags and bag sizes. In this paper, we propose a fast algorithm called multi-class learning from label proportions by extreme learning machine (LLP-ELM), which takes advantage of an extreme learning machine with fast learning speed to solve multi-class learning from label proportions. Firstly, we reshape the hidden layer output matrix and the training data target matrix of an extreme learning machine to adapt to the proportion information instead of the real labels. Secondly, a robust loss function with a regularization term is formulated and two efficient solutions are provided to different cases. Finally, various experiments demonstrate the significant speed-up of the proposed model with better accuracies on different datasets compared with several state-of-the-art methods.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012013
Author(s):  
Boon Pin Ooi ◽  
Norasmadi Abdul Rahim ◽  
Maz Jamilah Masnan ◽  
Ammar Zakaria

Abstract Extreme learning machine (ELM) is a special type of single hidden layer feedforward neural network that emphasizes training speed and optimal generalization. The ELM model proposes that the weights of hidden neurons need not be tuned, and the weights of output neurons can be calculated by finding the Moore-Penrose generalized inverse method. Thus, the ELM classifier is suitable to use in a homogeneous ensemble model due to the untuned random hidden weights which promote diversity even with the same training data. This paper studies the effectiveness of the ELM ensemble models in solving small sample-sized classification problems. The research involves two variants of the ensemble model: the normal ELM ensemble with majority voting (ELE), and the random subspace method (RS-ELM). To simulate the small sample cases, only 30% of the total data will be used as the training data. Experiment results show that the RS-ELM model can outperform a multi-layer perceptron (MLP) model under the assumptions of a Friedman test. Furthermore, the ELE model has similar performance as an MLP model under the same assumptions.


Sign in / Sign up

Export Citation Format

Share Document