scholarly journals Predicting and Using a Pragmatic Component of Lexical Aspect

2016 ◽  
Vol 13 ◽  
Author(s):  
Sharid Loáiciga ◽  
Cristina Grisot

This paper proposes a method for improving the results of a statistical Machine Translation system using boundedness, a pragmatic component of the verbal phrase’s lexical aspect. First, the paper presents manual and automatic annotation experiments for lexical aspect in English-French parallel corpora. It will be shown that this aspectual property is identified and classified with ease both by humans and by automatic systems. Second, Statistical Machine Translation experiments using the boundedness annotations are presented. These experiments show that the information regarding lexical aspect is useful to improve the output of a Machine Translation system in terms of better choices of verbal tenses in the target language, as well as better lexical choices. Ultimately, this work aims at providing a method for the automatic annotation of data with boundedness information and at contributing to Machine Translation by taking into account linguistic data.

2005 ◽  
Vol 31 (4) ◽  
pp. 477-504 ◽  
Author(s):  
Dragos Stefan Munteanu ◽  
Daniel Marcu

We present a novel method for discovering parallel sentences in comparable, non-parallel corpora. We train a maximum entropy classifier that, given a pair of sentences, can reliably determine whether or not they are translations of each other. Using this approach, we extract parallel data from large Chinese, Arabic, and English non-parallel newspaper corpora. We evaluate the quality of the extracted data by showing that it improves the performance of a state-of-the-art statistical machine translation system. We also show that a good-quality MT system can be built from scratch by starting with a very small parallel corpus (100,000 words) and exploiting a large non-parallel corpus. Thus, our method can be applied with great benefit to language pairs for which only scarce resources are available.


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 02) ◽  
pp. 208-222
Author(s):  
Vikas Pandey ◽  
Dr.M.V. Padmavati ◽  
Dr. Ramesh Kumar

Machine Translation is a subfield of Natural language Processing (NLP) which uses to translate source language to target language. In this paper an attempt has been made to make a Hindi Chhattisgarhi machine translation system which is based on statistical approach. In the state of Chhattisgarh there is a long awaited need for Hindi to Chhattisgarhi machine translation system for converting Hindi into Chhattisgarhi especially for non Chhattisgarhi speaking people. In order to develop Hindi Chhattisgarhi statistical machine translation system an open source software called Moses is used. Moses is a statistical machine translation system and used to automatically train the translation model for Hindi Chhattisgarhi language pair called as parallel corpus. A collection of structured text to study linguistic properties is called corpus. This machine translation system works on parallel corpus of 40,000 Hindi-Chhattisgarhi bilingual sentences. In order to overcome translation problem related to proper noun and unknown words, a transliteration system is also embedded in it. These sentences are extracted from various domains like stories, novels, text books and news papers etc. This system is tested on 1000 sentences to check the grammatical correctness of sentences and it was found that an accuracy of 75% is achieved.


Author(s):  
Ignatius Ikechukwu Ayogu ◽  
Adebayo Olusola Adetunmbi ◽  
Bolanle Adefowoke Ojokoh

The global demand for translation and translation tools currently surpasses the capacity of available solutions. Besides, there is no one-solution-fits-all, off-the-shelf solution for all languages. Thus, the need and urgency to increase the scale of research for the development of translation tools and devices continue to grow, especially for languages suffering under the pressure of globalisation. This paper discusses our experiments on translation systems between English and two Nigerian languages: Igbo and Yorùbá. The study is setup to build parallel corpora, train and experiment English-to-Igbo, (), English-to-Yorùbá, () and Igbo-to-Yorùbá, () phrase-based statistical machine translation systems. The systems were trained on parallel corpora that were created for each language pair using text from the religious domain in the course of this research. A BLEU score of 30.04, 29.01 and 18.72 respectively was recorded for the English-to-Igbo, English-to-Yorùbá and Igbo-to-Yorùbá MT systems. An error analysis of the systems’ outputs was conducted using a linguistically motivated MT error analysis approach and it showed that errors occurred mostly at the lexical, grammatical and semantic levels. While the study reveals the potentials of our corpora, it also shows that the size of the corpora is yet an issue that requires further attention. Thus an important target in the immediate future is to increase the quantity and quality of the data.  


2012 ◽  
Vol 18 (4) ◽  
pp. 549-573 ◽  
Author(s):  
YULIA TSVETKOV ◽  
SHULY WINTNER

AbstractWe present a general, novel methodology for extracting multi-word expressions (MWEs) of various types, along with their translations, from small, word-aligned parallel corpora. Unlike existing approaches, we focus on misalignments; these typically indicate expressions in the source language that are translated to the target in a non-compositional way. We introduce a simple algorithm that proposes MWE candidates based on such misalignments, relying on 1:1 alignments as anchors that delimit the search space. We use a large monolingual corpus to rank and filter these candidates. Evaluation of the quality of the extraction algorithm reveals significant improvements over naïve alignment-based methods. The extracted MWEs, with their translations, are used in the training of a statistical machine translation system, showing a small but significant improvement in its performance.


2016 ◽  
Vol 22 (4) ◽  
pp. 603-625 ◽  
Author(s):  
HAITHEM AFLI ◽  
LOÏC BARRAULT ◽  
HOLGER SCHWENK

AbstractIn recent decades, statistical approaches have significantly advanced the development of machine translation systems. However, the applicability of these methods directly depends on the availability of very large quantities of parallel data. Recent works have demonstrated that a comparable corpus can compensate for the shortage of parallel corpora. In this paper, we propose an alternative to comparable corpora containing text documents as resources for extracting parallel data: a multimodal comparable corpus with audio documents in source language and text document in target language, built fromEuronewsandTEDweb sites. The audio is transcribed by an automatic speech recognition system, and translated with a baseline statistical machine translation system. We then use information retrieval in a large text corpus in the target language in order to extract parallel sentences/phrases. We evaluate the quality of the extracted data on an English to French translation task and show significant improvements over a state-of-the-art baseline.


2016 ◽  
Vol 1 (1) ◽  
pp. 45-49
Author(s):  
Avinash Singh ◽  
Asmeet Kour ◽  
Shubhnandan S. Jamwal

The objective behind this paper is to analyze the English-Dogri parallel corpus translation. Machine translation is the translation from one language into another language. Machine translation is the biggest application of the Natural Language Processing (NLP). Moses is statistical machine translation system allow to train translation models for any language pair. We have developed translation system using Statistical based approach which helps in translating English to Dogri and vice versa. The parallel corpus consists of 98,973 sentences. The system gives accuracy of 80% in translating English to Dogri and the system gives accuracy of 87% in translating Dogri to English system.


2014 ◽  
Vol 102 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Torregrosa Daniel ◽  
Forcada Mikel L. ◽  
Pérez-Ortiz Juan Antonio

Abstract We present a web-based open-source tool for interactive translation prediction (ITP) and describe its underlying architecture. ITP systems assist human translators by making context-based computer-generated suggestions as they type. Most of the ITP systems in literature are strongly coupled with a statistical machine translation system that is conveniently adapted to provide the suggestions. Our system, however, follows a resource-agnostic approach and suggestions are obtained from any unmodified black-box bilingual resource. This paper reviews our ITP method and describes the architecture of Forecat, a web tool, partly based on the recent technology of web components, that eases the use of our ITP approach in any web application requiring this kind of translation assistance. We also evaluate the performance of our method when using an unmodified Moses-based statistical machine translation system as the bilingual resource.


2016 ◽  
Vol 5 (4) ◽  
pp. 51-66 ◽  
Author(s):  
Krzysztof Wolk ◽  
Krzysztof P. Marasek

The quality of machine translation is rapidly evolving. Today one can find several machine translation systems on the web that provide reasonable translations, although the systems are not perfect. In some specific domains, the quality may decrease. A recently proposed approach to this domain is neural machine translation. It aims at building a jointly-tuned single neural network that maximizes translation performance, a very different approach from traditional statistical machine translation. Recently proposed neural machine translation models often belong to the encoder-decoder family in which a source sentence is encoded into a fixed length vector that is, in turn, decoded to generate a translation. The present research examines the effects of different training methods on a Polish-English Machine Translation system used for medical data. The European Medicines Agency parallel text corpus was used as the basis for training of neural and statistical network-based translation systems. A comparison and implementation of a medical translator is the main focus of our experiments.


Sign in / Sign up

Export Citation Format

Share Document