scholarly journals Lipase B from Candida antarctica Immobilized on Epoxy-functionalized Hollow Silica Microspheres: Efficient Biocatalysts for Enantiomer Selective Acylation of Alcohols and Amines

Author(s):  
Márk Oláh ◽  
Szandra Suba ◽  
Zoltán Boros ◽  
Péter Kovács ◽  
Mathilde Gosselin ◽  
...  

Hollow silica microspheres with promising physical properties (MAT540TM) as support for enzyme immobilization and biocatalyst were investigated in this study. The amine-functionalized MAT540TM was activated by six bisepoxides inclosing different spacers and used as epoxy-functionalized carrier for immobilization of lipase B from Candida antarctica (CaLB). The novel, covalently fixed CaLB biocatalysts were compared in kinetic resolution (KR) of racemic 1-phenyethanol rac-1 and five racemic amines rac-3a-e using shaken flasks and continuous-flow packed-bed microreactors. Mechanic stability, re-usability and the effect of temperature (0–90 °C) on productivity and enantiomer selectivity of the covalently immobilized CaLB were investigated. The best performing CaLB biocatalyst showed good mechanic stability after 24 h operation time in continuous-flow mode at 60 °C and provided in KRs of racemic 1-phenyethanol rac-1 with vinyl acetate and of five racemic amines with isopropyl 2-ethoxyacetate as acylating agent the non-reacted (S)-alcohol [(S)-1] or (S)-amines [(S)-3a-e] and the forming (R)-ester [(R)-2] or (R)-amide [(R)-4a-e] in good yields with high enantiomeric excess (ee > 99 %, for all).

Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 438 ◽  
Author(s):  
Zsófia Molnár ◽  
Emese Farkas ◽  
Ágnes Lakó ◽  
Balázs Erdélyi ◽  
Wolfgang Kroutil ◽  
...  

Immobilization of transaminases creates promising biocatalysts for production of chiral amines in batch or continuous-flow mode reactions. E. coli cells containing overexpressed transaminases of various selectivities and hollow silica microspheres as supporting agent were immobilized by an improved sol-gel process to produce immobilized transaminase biocatalysts with suitable stability and mechanical properties for continuous-flow applications. The immobilized cell-based transaminase biocatalyst proved to be durable and easy-to-use in kinetic resolution of four racemic amines 1a–d. The batch and continuous-flow mode kinetic resolutions with transaminase biocatalyst of opposite stereopreference provided access to both enantiomers of the corresponding amines. By using the most suitable immobilized transaminase biocatalysts, this study describes the first transaminase-based approach for the production of both pure enantiomers of 1-(3,4-dimethoxyphenyl)ethan-1-amine 1d.


Author(s):  
Flóra Nagy ◽  
Kinga Szabó ◽  
Péter Bugovics ◽  
Gábor Hornyánszky

An efficient and easy-to-perform method was developed for covalent immobilization of lipase from Burkholderia cepacia (Lipase PS) on hollow silica microspheres (M540) by bisepoxide activation. For immobilization, various bisepoxides of different length, rigidity and hydrophobicity in their linkers were applied to activate the amino groups on the M540 support. Effect of the individual bisepoxides on the catalytic performance of the immobilized Lipase PS was studied by using lipase-catalyzed kinetic resolution (KR) of racemic 1-phenylethanol (rac-1) with vinyl acetate in batch mode. Catalytic activity, enantiomer selectivity, recyclability and thermal stability of the new immobilized Lipase PS biocatalysts were investigated. The optimal enzyme / support ratio with the support activated by the most efficient bisepoxide, i.e. poly(ethylene glycol) diglycidyl ether (PDE), was 1:5. The most efficient Lipase PS on PDE activated M540 showed an almost five fold higher biocatalytic activity value (rbatch = 42.8 U/g) with enhanced selectivity (ee(R)-2 = 99.1 %) to the free form of Lipase PS (rbatch = 9.0 U/g; ee(R)-2 = 98.9 %). The Lipase PS on PDE-M540 was compared to a commercially available immobilized Lipase PS biocatalyst (Lipobond Lipase PS) and also applied in a packed-bed enzyme reactor operated in continuous-flow mode, where the optimal temperature of M540-PDE-PS reached the 70 °C, while the optimum for Lipobond Lipase PS was 50 °C.


Author(s):  
Cristian Andrei Gal ◽  
Laura Edit Barabas ◽  
Judith Hajnal Bartha-Vari ◽  
Madalina Elena Moisa ◽  
Diana Balogh-Weiser ◽  
...  

An efficient nanobioconjugate of lipase B from Candida antarctica was prepared by the covalent binding on carboxy-functionalized single-walled carbon nanotubes and tested in batch and flow mode for the enzymatic...


Sign in / Sign up

Export Citation Format

Share Document