scholarly journals Immobilized Whole-Cell Transaminase Biocatalysts for Continuous-Flow Kinetic Resolution of Amines

Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 438 ◽  
Author(s):  
Zsófia Molnár ◽  
Emese Farkas ◽  
Ágnes Lakó ◽  
Balázs Erdélyi ◽  
Wolfgang Kroutil ◽  
...  

Immobilization of transaminases creates promising biocatalysts for production of chiral amines in batch or continuous-flow mode reactions. E. coli cells containing overexpressed transaminases of various selectivities and hollow silica microspheres as supporting agent were immobilized by an improved sol-gel process to produce immobilized transaminase biocatalysts with suitable stability and mechanical properties for continuous-flow applications. The immobilized cell-based transaminase biocatalyst proved to be durable and easy-to-use in kinetic resolution of four racemic amines 1a–d. The batch and continuous-flow mode kinetic resolutions with transaminase biocatalyst of opposite stereopreference provided access to both enantiomers of the corresponding amines. By using the most suitable immobilized transaminase biocatalysts, this study describes the first transaminase-based approach for the production of both pure enantiomers of 1-(3,4-dimethoxyphenyl)ethan-1-amine 1d.

Author(s):  
Márk Oláh ◽  
Szandra Suba ◽  
Zoltán Boros ◽  
Péter Kovács ◽  
Mathilde Gosselin ◽  
...  

Hollow silica microspheres with promising physical properties (MAT540TM) as support for enzyme immobilization and biocatalyst were investigated in this study. The amine-functionalized MAT540TM was activated by six bisepoxides inclosing different spacers and used as epoxy-functionalized carrier for immobilization of lipase B from Candida antarctica (CaLB). The novel, covalently fixed CaLB biocatalysts were compared in kinetic resolution (KR) of racemic 1-phenyethanol rac-1 and five racemic amines rac-3a-e using shaken flasks and continuous-flow packed-bed microreactors. Mechanic stability, re-usability and the effect of temperature (0–90 °C) on productivity and enantiomer selectivity of the covalently immobilized CaLB were investigated. The best performing CaLB biocatalyst showed good mechanic stability after 24 h operation time in continuous-flow mode at 60 °C and provided in KRs of racemic 1-phenyethanol rac-1 with vinyl acetate and of five racemic amines with isopropyl 2-ethoxyacetate as acylating agent the non-reacted (S)-alcohol [(S)-1] or (S)-amines [(S)-3a-e] and the forming (R)-ester [(R)-2] or (R)-amide [(R)-4a-e] in good yields with high enantiomeric excess (ee > 99 %, for all).


Author(s):  
Ludivine van den Biggelaar ◽  
Patrice Soumillion ◽  
Damien P. Debecker

ω-Transaminases have been immobilized on macrocellular silica monoliths and used as heterogeneous biocatalysts in a continuous flow mode enantioselective transamination reaction. The support was prepared by a sol-gel method based on emulsion-templating. The enzyme was immobilized on the structured silica monoliths both by adsorption, and by covalent grafting using amino-functionalized silica monoliths and glutaraldehyde as a coupling agent. A simple reactor set-up based on the use of a heat-shrinkable Teflon tube is presented and successfully used for the continuous flow kinetic resolution of a chiral amine, 4-bromo-α-methylbenzylamine. The porous structure of the supports ensures effective mass transfer and the reactor works in the plug flow regime without preferential flow paths. When immobilized in the monolith and used in the flow reactor, transaminases retain their activity and their enantioselectivity. The solid biocatalyst is also shown to be stable both on stream and during storage. These essential features pave the way to the successful development of an environmentally friendly process for chiral amines production.


Author(s):  
Ludivine van den Biggelaar ◽  
Patrice Soumillion ◽  
Damien P. Debecker

ω-Transaminases have been immobilized on macrocellular silica monoliths and used as heterogeneous biocatalysts in a continuous flow mode enantioselective transamination reaction. The support was prepared by a sol-gel method based on emulsion templating. The enzyme was immobilized on the structured silica monoliths both by adsorption, and by covalent grafting using amino-functionalized silica monoliths and glutaraldehyde as a coupling agent. A simple reactor set-up based on the use of a heat-shrinkable Teflon tube is presented and successfully used for the continuous flow kinetic resolution of a chiral amine, 4-bromo-α-methylbenzylamine. The porous structure of the supports ensures effective mass transfer and the reactor works in the plug flow regime without preferential flow paths. When immobilized in the monolith and used in the flow reactor, transaminases retain their activity and their enantioselectivity. The solid biocatalyst is also shown to be stable both on stream and during storage. These essential features pave the way to the successful development of an environmentally friendly process for chiral amines production.


RSC Advances ◽  
2017 ◽  
Vol 7 (83) ◽  
pp. 52977-52987 ◽  
Author(s):  
Mădălina Elena Moisă ◽  
Cristina Georgiana Spelmezan ◽  
Cristina Paul ◽  
Judith Hajnal Bartha-Vári ◽  
László Csaba Bencze ◽  
...  

The EKR of some heteroaromatic secondary ethanols with tailored sol–gel immobilized lipases in batch and continuous-flow reactors was studied. The productivity in continuous-flow mode is higher than in batch mode.


2014 ◽  
Vol 16 (23) ◽  
pp. 6092-6095 ◽  
Author(s):  
Leandro H. Andrade ◽  
Wolfgang Kroutil ◽  
Timothy F. Jamison

2019 ◽  
Author(s):  
Ludivine van den Biggelaar ◽  
Patrice Soumillion ◽  
Damien Debecker

<div>Transaminases are immobilized onto macrocellular silica monoliths and used for carrying a continuous flow mode transamination reaction. Monoliths were prepared via an emulsion-templated sol-gel method and functionalized by amino-moieties (APTES) in order to covalently immobilize the enzymes, using glutaraldehyde as a cross-linking agent. In order to obtain higher performance and improved reproducibility, we investigate the key parameters of APTES functionalization and of enzyme grafting. Four functionalization protocols were studied. It is shown that controlling the moisture levels in monolith and in the functionalisation solution led to a 3-fold increase in activity as compared to the previously reported data, and greatly improved the reproducibility. Additionally, we report a strong beneficial effect of running the enzyme immobilization at room temperature instead of 4°C, further enhancing the obtained activity. Finally, the popular method which consists in stabilizing the covalent attachment of the enzyme by reducing the imine bonds formed between the enzyme and the functionalized surface was investigated. We highlight a strong enzyme deactivation caused by cyanoborohydride, making this strategy irrelevant in this case. All in all, the improvements presented here for enzyme immobilization in macrocellular silica monoliths, lead to the preparation of more active materials for continuous flow mode biocatalysis.<br></div>


2018 ◽  
Vol 132 ◽  
pp. 270-278 ◽  
Author(s):  
Emese Abaházi ◽  
Péter Sátorhelyi ◽  
Balázs Erdélyi ◽  
Beáta G. Vértessy ◽  
Henrik Land ◽  
...  

2018 ◽  
Vol 20 (24) ◽  
pp. 8052-8056 ◽  
Author(s):  
Emese Farkas ◽  
Márk Oláh ◽  
Attila Földi ◽  
János Kóti ◽  
János Éles ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document