scholarly journals The Hybrid Invasive Weed Optimization-Shuffled Frog-leaping Algorithm Applied to Optimal Design of Frame Structures

Author(s):  
Ali Kaveh ◽  
Siamak Talatahari ◽  
Nima Khodadadi

In this article, an efficient hybrid optimization algorithm based on invasive weed optimization algorithm and shuffled frog-leaping algorithm is utilized for optimum design of skeletal frame structures. The shuffled frog-leaping algorithm is a population-based cooperative search metaphor inspired by natural memetic, and the invasive weed optimization algorithm is an optimization method based on dynamic growth of weeds colony. In the proposed algorithm, shuffled frog-leaping algorithm works to find optimal solution region rapidly, and invasive weed optimization performs the global search. Different benchmark frame structures are optimized using the new hybrid algorithm. Three design examples are tested using the new method. This algorithm converges to better or at least the same solutions compared the utilized methods with a smaller number of analyses. The outcomes are compared to those obtained previously using other recently developed meta-heuristic optimization methods.

2019 ◽  
Vol 6 (3) ◽  
pp. 284-295 ◽  
Author(s):  
Mojgan Misaghi ◽  
Mahdi Yaghoobi

Abstract Weed is a phenomenon which is looks for optimality and finds the best environment for life and quickly adapts itself to environmental conditions and resists changes. Considering these features, a powerful optimization algorithm is developed in this study. The invasive weed optimization algorithm (IWO) is a population-based evolutionary optimization method inspired by the behavior of weed colonies. In this paper, the IWO algorithm is based on chaos theory. Among parameters of weed optimization algorithm, standard deviation affects the performance of the algorithm significantly. Therefore, chaotic maps are used in the standard deviation parameter. Performance of the chaotic invasive weed development method is investigated on five benchmark functions, using logistic chaotic mapping. Additionally, the problem of setting the PID controller parameters for a DC motor using the proposed method is discussed. The statistical results on optimization problems show that the improved chaotic weed algorithm has gained fast convergence rate and high accuracy. Highlights Improved Invasive weed optimization Algorithm (IWO) based on Chaos theory. Improved setting the parameters of PID controller uses Chaotic IWO Algorithm.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyan Tan ◽  
Xue Lu ◽  
Yan Liu ◽  
Qiang Wang ◽  
Huaxiang Zhang

In order to solve the multiobjective optimization problems efficiently, this paper presents a hybrid multiobjective optimization algorithm which originates from invasive weed optimization (IWO) and multiobjective evolutionary algorithm based on decomposition (MOEA/D), a popular framework for multiobjective optimization. IWO is a simple but powerful numerical stochastic optimization method inspired from colonizing weeds; it is very robust and well adapted to changes in the environment. Based on the smart and distinct features of IWO and MOEA/D, we introduce multiobjective invasive weed optimization algorithm based on decomposition, abbreviated as MOEA/D-IWO, and try to combine their excellent features in this hybrid algorithm. The efficiency of the algorithm both in convergence speed and optimality of results are compared with MOEA/D and some other popular multiobjective optimization algorithms through a big set of experiments on benchmark functions. Experimental results show the competitive performance of MOEA/D-IWO in solving these complicated multiobjective optimization problems.


Author(s):  
Shuo Peng ◽  
A.-J. Ouyang ◽  
Jeff Jun Zhang

With regards to the low search accuracy of the basic invasive weed optimization algorithm which is easy to get into local extremum, this paper proposes an adaptive invasive weed optimization (AIWO) algorithm. The algorithm sets the initial step size and the final step size as the adaptive step size to guide the global search of the algorithm, and it is applied to 20 famous benchmark functions for a test, the results of which show that the AIWO algorithm owns better global optimization search capacity, faster convergence speed and higher computation accuracy compared with other advanced algorithms.


Author(s):  
Eslam Mohammed Abdelkader ◽  
Osama Moselhi ◽  
Mohamed Marzouk ◽  
Tarek Zayed

Existing bridges are aging and deteriorating, raising concerns for public safety and the preservation of these valuable assets. Furthermore, the transportation networks that manage many bridges face budgetary constraints. This state of affairs necessitates the development of a computer vision-based method to alleviate shortcomings in visual inspection-based methods. In this context, the present study proposes a three-tier method for the automated detection and recognition of bridge defects. In the first tier, singular value decomposition ([Formula: see text]) is adopted to formulate the feature vector set through mapping the most dominant spatial domain features in images. The second tier encompasses a hybridization of the Elman neural network ([Formula: see text]) and the invasive weed optimization (I[Formula: see text]) algorithm to enhance the prediction performance of the ENN. This is accomplished by designing a variable optimization mechanism that aims at searching for the optimum exploration–exploitation trade-off in the neural network. The third tier involves validation through comparisons against a set of conventional machine-learning and deep-learning models capitalizing on performance prediction and statistical significance tests. A computerized platform was programmed in C#.net to facilitate implementation by the users. It was found that the method developed outperformed other prediction models achieving overall accuracy, F-measure, Kappa coefficient, balanced accuracy, Matthews’s correlation coefficient, and area under curve of 0.955, 0.955, 0.914, 0.965, 0.937, and 0.904, respectively as per cross validation. It is expected that the method developed can improve the decision-making process in bridge management systems.


Sign in / Sign up

Export Citation Format

Share Document