scholarly journals Improved invasive weed optimization algorithm (IWO) based on chaos theory for optimal design of PID controller

2019 ◽  
Vol 6 (3) ◽  
pp. 284-295 ◽  
Author(s):  
Mojgan Misaghi ◽  
Mahdi Yaghoobi

Abstract Weed is a phenomenon which is looks for optimality and finds the best environment for life and quickly adapts itself to environmental conditions and resists changes. Considering these features, a powerful optimization algorithm is developed in this study. The invasive weed optimization algorithm (IWO) is a population-based evolutionary optimization method inspired by the behavior of weed colonies. In this paper, the IWO algorithm is based on chaos theory. Among parameters of weed optimization algorithm, standard deviation affects the performance of the algorithm significantly. Therefore, chaotic maps are used in the standard deviation parameter. Performance of the chaotic invasive weed development method is investigated on five benchmark functions, using logistic chaotic mapping. Additionally, the problem of setting the PID controller parameters for a DC motor using the proposed method is discussed. The statistical results on optimization problems show that the improved chaotic weed algorithm has gained fast convergence rate and high accuracy. Highlights Improved Invasive weed optimization Algorithm (IWO) based on Chaos theory. Improved setting the parameters of PID controller uses Chaotic IWO Algorithm.

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyan Tan ◽  
Xue Lu ◽  
Yan Liu ◽  
Qiang Wang ◽  
Huaxiang Zhang

In order to solve the multiobjective optimization problems efficiently, this paper presents a hybrid multiobjective optimization algorithm which originates from invasive weed optimization (IWO) and multiobjective evolutionary algorithm based on decomposition (MOEA/D), a popular framework for multiobjective optimization. IWO is a simple but powerful numerical stochastic optimization method inspired from colonizing weeds; it is very robust and well adapted to changes in the environment. Based on the smart and distinct features of IWO and MOEA/D, we introduce multiobjective invasive weed optimization algorithm based on decomposition, abbreviated as MOEA/D-IWO, and try to combine their excellent features in this hybrid algorithm. The efficiency of the algorithm both in convergence speed and optimality of results are compared with MOEA/D and some other popular multiobjective optimization algorithms through a big set of experiments on benchmark functions. Experimental results show the competitive performance of MOEA/D-IWO in solving these complicated multiobjective optimization problems.


Author(s):  
Ali Kaveh ◽  
Siamak Talatahari ◽  
Nima Khodadadi

In this article, an efficient hybrid optimization algorithm based on invasive weed optimization algorithm and shuffled frog-leaping algorithm is utilized for optimum design of skeletal frame structures. The shuffled frog-leaping algorithm is a population-based cooperative search metaphor inspired by natural memetic, and the invasive weed optimization algorithm is an optimization method based on dynamic growth of weeds colony. In the proposed algorithm, shuffled frog-leaping algorithm works to find optimal solution region rapidly, and invasive weed optimization performs the global search. Different benchmark frame structures are optimized using the new hybrid algorithm. Three design examples are tested using the new method. This algorithm converges to better or at least the same solutions compared the utilized methods with a smaller number of analyses. The outcomes are compared to those obtained previously using other recently developed meta-heuristic optimization methods.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1190
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Štěpán Hubálovský

There are many optimization problems in the different disciplines of science that must be solved using the appropriate method. Population-based optimization algorithms are one of the most efficient ways to solve various optimization problems. Population-based optimization algorithms are able to provide appropriate solutions to optimization problems based on a random search of the problem-solving space without the need for gradient and derivative information. In this paper, a new optimization algorithm called the Group Mean-Based Optimizer (GMBO) is presented; it can be applied to solve optimization problems in various fields of science. The main idea in designing the GMBO is to use more effectively the information of different members of the algorithm population based on two selected groups, with the titles of the good group and the bad group. Two new composite members are obtained by averaging each of these groups, which are used to update the population members. The various stages of the GMBO are described and mathematically modeled with the aim of being used to solve optimization problems. The performance of the GMBO in providing a suitable quasi-optimal solution on a set of 23 standard objective functions of different types of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal is evaluated. In addition, the optimization results obtained from the proposed GMBO were compared with eight other widely used optimization algorithms, including the Marine Predators Algorithm (MPA), the Tunicate Swarm Algorithm (TSA), the Whale Optimization Algorithm (WOA), the Grey Wolf Optimizer (GWO), Teaching–Learning-Based Optimization (TLBO), the Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), and the Genetic Algorithm (GA). The optimization results indicated the acceptable performance of the proposed GMBO, and, based on the analysis and comparison of the results, it was determined that the GMBO is superior and much more competitive than the other eight algorithms.


Author(s):  
Shuo Peng ◽  
A.-J. Ouyang ◽  
Jeff Jun Zhang

With regards to the low search accuracy of the basic invasive weed optimization algorithm which is easy to get into local extremum, this paper proposes an adaptive invasive weed optimization (AIWO) algorithm. The algorithm sets the initial step size and the final step size as the adaptive step size to guide the global search of the algorithm, and it is applied to 20 famous benchmark functions for a test, the results of which show that the AIWO algorithm owns better global optimization search capacity, faster convergence speed and higher computation accuracy compared with other advanced algorithms.


Sign in / Sign up

Export Citation Format

Share Document