scholarly journals EFFECTS OF A PROSTHETIC FOOT WITH INCREASED CORONAL ADAPTABILITY ON CROSS-SLOPE WALKING

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Björn Altenburg ◽  
Michael Ernst ◽  
Pawel Maciejasz ◽  
Thomas Schmalz ◽  
Frank Braatz ◽  
...  

BACKGROUND: Walking on cross-slopes is a common but challenging task for persons with lower limb amputation. The uneven ground and the resulting functional leg length discrepancy in this situation requires adaptability of both user and prosthesis. OBJECTIVE(S): This study investigated the effects of a novel prosthetic foot that offers adaptability on cross-slope surfaces, using instrumented gait analysis and patient-reported outcomes. Moreover, the results were compared with two common prosthetic feet.  METHODOLOGY: Twelve individuals with unilateral transtibial amputation and ten able-bodied control subjects participated in this randomized cross-over study. Participants walked on level ground and ±10° inclined cross-slopes at a self-selected walking speed. There were three prosthetic foot interventions: Triton Side Flex (TSF), Triton LP and Pro-Flex LP. The accommodation time for each foot was at least 4 weeks. The main outcome measures were as follows: frontal plane adaptation of shoe and prosthetic foot keel, mediolateral course of the center of pressure, ground reaction force in vertical and mediolateral direction, external knee adduction moment, gait speed, stance phase duration, step length and step width. Patient-reported outcomes assessed were the Activities Specific Balanced Confidence (ABC) scale, Prosthetic Limb Users Survey of Mobility (PLUS M) and Activities of Daily Living Questionnaire (ADL-Q).  FINDINGS: The TSF prosthetic foot adapted both faster and to a greater extent to the cross-slope conditions compared to the Triton LP and Pro-Flex LP. The graphs for the mediolateral center of pressure course and mediolateral ground reaction force showed a distinct grouping for level ground and ±10° cross-slopes, similar to control subjects. In the ADL-Q, participants reported a higher level of perceived safety and comfort when using the TSF on cross-slopes. Eight out of twelve participants preferred the TSF over the reference. CONCLUSION: The frontal plane adaptation characteristics of the TSF prosthetic foot appear to be beneficial to the user and thus may enhance locomotion on uneven ground – specifically on cross-slopes. Layman's Abstract Walking on cross-slopes is a common but challenging task for persons with lower limb amputation. The adaptability of prostheses is limited. Users alter gait strategies to cope with uneven ground. The prosthetic foot is a central component of a lower limb prosthesis. This study investigated if a novel prosthetic foot with greater adaptability is beneficial on cross-slopes. Twelve individuals with transtibial amputation (ITTAs) took part in the study. In addition, ten abled-bodied persons were measured as controls. The ITTAs were fitted with the novel foot and a reference foot. The accommodation time for each foot was four weeks at least. Afterwards gait data and patient-reported outcomes were assessed. The analyzed gait data showed clear differences in terrain compliance for the measured feet. The novel foot adapts both faster and to a greater extent to the cross-slope conditions. The self-reported outcome measures revealed better comfort and perceived safety when using the adaptive foot concept in comparison to the commercial reference. These results suggest that the adaptation characteristics of the novel foot concept are beneficial to the user. Thus, it may enhance locomotion on uneven ground such as cross-slopes. Article PDF Link: How To Cite: Altenburg B, Ernst M, Maciejasz P, Schmalz T, Braatz F, Gerke H, Bellmann M. Effects of a prosthetic foot with increased coronal adaptability on cross-slope walking. Canadian Prosthetics & Orthotics Journal. 2021;Volume 4, Issue 1, No.7.  https://doi.org/10.33137/cpoj.v4i1.35206 Corresponding Author: Björn Altenburg,Research Biomechanics, Ottobock SE & Co. KGaA, Göttingen, Germany.E-Mail: [email protected] ID: https://orcid.org/0000-0002-3484-4346  

Author(s):  
Suo Di Xu ◽  
Zhi Qiang Liang ◽  
Yu Wei Liu ◽  
Gusztáv Fekete

The purpose of this study was to evaluate the biomechanical performances, running stability of habitually barefoot (BR) and shod runners (SR) during barefoot jogging and running. Ten healthy male subjects, 5 habitually shod runners and 5 habitually barefoot runners, from two different ethnics participated in this study. Subjects performed jogging (2m/s) and running (4m/s) along a 10-m runway. Three-dimensional lower-limb kinematics, ground reaction force, center of pressure (COP) and contact time (CT), were collected during testing. During jogging and running, all participants adopted rear-foot strike pattern, SR had larger VALR. SR showed significantly larger lower-limb range of motion (ROM) in sagittal plane, significantly larger hip abduction and opposite knee ROM in frontal plane, as well as significantly larger ankle internal rotation in horizontal plane. All participants’ CT showed decreased trend with running speed up; and SR was significantly longer than BR; BR and SR in COP showed different trajectories, especially forefoot and rearfoot areas. Habitually barefoot and shod runner from different ethnics still exist significant differences in lower-extremity ROM; and different foot morphological of participants is an important influential factor for these variations.


2020 ◽  
Vol 44 (4) ◽  
pp. 225-233
Author(s):  
Michael Ernst ◽  
Björn Altenburg ◽  
Thomas Schmalz

Background: Energy-storage and return feet incorporate various design features including split toes. As a potential improvement, an energy-storage and return foot with a dedicated ankle joint was recently introduced allowing for easily accessible inversion/eversion movement. However, the adaptability of energy-storage and return feet to uneven ground and the effects on biomechanical and clinical parameters have not been investigated in detail. Objectives: To investigate the design-related ability of prosthetic feet to adapt to cross slopes and derive a theoretical model. Study design: Mechanical testing and characterization. Methods: Mechanical adaptation to cross slopes was investigated for six prosthetic feet measured by a motion capture system. A theoretical model linking the measured data with adaptations is proposed. Results: The type and degree of adaptation depends on the foot design, for example, stiffness, split toe or continuous carbon forefoot, and additional ankle joint. The model used shows high correlations with the measured data for all feet. Conclusions: The ability of prosthetic feet to adapt to uneven ground is design-dependent. The split-toe feet adapted better to cross slopes than those with continuous carbon forefeet. Joints enhance this further by allowing for additional inversion and eversion. The influence on biomechanical and clinical parameters should be assessed in future studies. Clinical relevance Knowing foot-specific ability to adapt to uneven ground may help in selecting an appropriate prosthetic foot for persons with a lower limb amputation. Faster and more comprehensive adaptations to uneven ground may lower the need for compensations and therefore increase user safety.


2021 ◽  
Author(s):  
Taketo Kurozumi ◽  
Takahiro Inui ◽  
Yuhei Nakayama ◽  
Akifumi Honda ◽  
Kentaro Matsui ◽  
...  

Abstract Background: Owing to advances in knowledge and technology, salvaging the limbs of patients with severe trauma and injuries is possible. However, severe limb injuries occasionally necessitate amputation because it allows patients to regain their social lives earlier than limb salvaging. Moreover, previous related investigations are retrospective cohort studies or meta-analyses of retrospective studies, and prospective cohort studies of patient-reported outcomes are extremely rare. This single-center, prospective cohort study aimed to compare the patient-reported outcomes at 1 year after injury between limb salvage and amputation and to elucidate whether amputation contributes to early recovery of functionality and quality of life.Methods: We included 47 limbs of 45 patients with severe open fractures of the lower limb and categorized them into limb salvage and amputation groups. They were registered in the Database of Orthopedic Trauma by the Japanese Society for Fracture Repair at our center; data on patient-reported outcomes at 1 year after injury were obtained from this database. The mean patient age was 49.6 years. Patients’ limbs were evaluated using the lower extremity functional scale (LEFS) and Short-Form 8 (SF-8). Early recovery was evaluated using functionality and quality-of-life questionnaires. Nonparametric statistical analyses were conducted.Results: Of the 47 limbs, 34 limbs of 34 patients were salvaged and 13 limbs of 11 patients were amputated. Significant differences were noted between the limb salvage and amputation groups in terms of the LEFS scores (mean: 49.5 vs 33.1, P=0.025) and scores for the mental health component (mean: 48.7 vs 38.7, P=0.003), role–physical component (mean: 42.2 vs 33.3, P=0.026), and mental component summary (mean: 48.2 vs 41.3, P=0.042) of the SF-8. The limb salvage group had better scores than the amputation group. Conclusions: In this study, limb salvage results in better functional and mental health outcomes at 1 year after severe lower limb injury than after amputation. As reconstruction technology has advanced and limb salvaging has become possible, the focus of studies should now be based on the perspective of “how the patient feels”; hence, we believe that the results of this study, which is based on patient-reported outcomes, are meaningful.


2019 ◽  
Vol 229 (4) ◽  
pp. S31-S32
Author(s):  
Danny Mou ◽  
Claire de Vries ◽  
Tomas Tesfasilassie ◽  
Lisa van den Berg ◽  
Dennis Makarawung ◽  
...  

2014 ◽  
Vol 33 (2) ◽  
pp. 261-269 ◽  
Author(s):  
Deborah Solomonow-Avnon ◽  
Alon Wolf ◽  
Amir Herman ◽  
Nimrod Rozen ◽  
Amir Haim

2005 ◽  
Vol 95 (6) ◽  
pp. 531-541 ◽  
Author(s):  
Bart Van Gheluwe ◽  
Kevin A. Kirby ◽  
Friso Hagman

The mechanical effects of genu valgum and varum deformities on the subtalar joint were investigated. First, a theoretical model of the forces within the foot and lower extremity during relaxed bipedal stance was developed predicting the rotational effect on the subtalar joint due to genu valgum and varum deformities. Second, a kinetic gait study was performed involving 15 subjects who walked with simulated genu valgum and genu varum over a force plate and a plantar pressure mat to determine the changes in the ground reaction force vector within the frontal plane and the changes in the center-of-pressure location on the plantar foot. These results predicted that a genu varum deformity would tend to cause a subtalar pronation moment to increase or a supination moment to decrease during the contact and propulsion phases of walking. With genu valgum, it was determined that during the contact phase a subtalar pronation moment would increase, whereas in the early propulsive phase, a subtalar supination moment would increase or a pronation moment would decrease. However, the current inability to track the spatial position of the subtalar joint axis makes it difficult to determine the absolute direction and magnitudes of the subtalar joint moments. (J Am Podiatr Med Assoc 95(6): 531–541, 2005)


Sign in / Sign up

Export Citation Format

Share Document