scholarly journals A Machine Learning Approach for Improving the Performance of Network Intrusion Detection Systems

2021 ◽  
Vol 5 (5) ◽  
pp. 201-208
Author(s):  
Adnan Helmi Azizan ◽  
Salama A. Mostafa ◽  
Aida Mustapha ◽  
Cik Feresa Mohd Foozy ◽  
Mohd Helmy Abd Wahab ◽  
...  

Intrusion detection systems (IDS) are used in analyzing huge data and diagnose anomaly traffic such as DDoS attack; thus, an efficient traffic classification method is necessary for the IDS. The IDS models attempt to decrease false alarm and increase true alarm rates in order to improve the performance accuracy of the system. To resolve this concern, three machine learning algorithms have been tested and evaluated in this research which are decision jungle (DJ), random forest (RF) and support vector machine (SVM). The main objective is to propose a ML-based network intrusion detection system (ML-based NIDS) model that compares the performance of the three algorithms based on their accuracy and precision of anomaly traffics. The knowledge discovery in databases (KDD) methodology and intrusion detection evaluation dataset (CIC-IDS2017) are used in the testing which both are considered as a benchmark in the evaluation of IDS. The average accuracy results of the SVM is 98.18%, RF is 96.76% and DJ is 96.50% in which the highest accuracy is achieved by the SVM. The average precision results of the SVM is 98.74, RF is 97.96 and DJ is 97.82 in which the SVM got a higher average precision compared with the other two algorithms. The average recall results of the SVM is 95.63, RF is 97.62 and DJ is 95.77 in which the RF achieves the highest average of recall than SVM and DJ. In overall, the SVM algorithm is found to be the best algorithm that can be used to detect an intrusion in the system.

Information ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 315
Author(s):  
Nathan Martindale ◽  
Muhammad Ismail ◽  
Douglas A. Talbert

As new cyberattacks are launched against systems and networks on a daily basis, the ability for network intrusion detection systems to operate efficiently in the big data era has become critically important, particularly as more low-power Internet-of-Things (IoT) devices enter the market. This has motivated research in applying machine learning algorithms that can operate on streams of data, trained online or “live” on only a small amount of data kept in memory at a time, as opposed to the more classical approaches that are trained solely offline on all of the data at once. In this context, one important concept from machine learning for improving detection performance is the idea of “ensembles”, where a collection of machine learning algorithms are combined to compensate for their individual limitations and produce an overall superior algorithm. Unfortunately, existing research lacks proper performance comparison between homogeneous and heterogeneous online ensembles. Hence, this paper investigates several homogeneous and heterogeneous ensembles, proposes three novel online heterogeneous ensembles for intrusion detection, and compares their performance accuracy, run-time complexity, and response to concept drifts. Out of the proposed novel online ensembles, the heterogeneous ensemble consisting of an adaptive random forest of Hoeffding Trees combined with a Hoeffding Adaptive Tree performed the best, by dealing with concept drift in the most effective way. While this scheme is less accurate than a larger size adaptive random forest, it offered a marginally better run-time, which is beneficial for online training.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012006
Author(s):  
B Padmaja ◽  
K Sai Sravan ◽  
E Krishna Rao Patro ◽  
G Chandra Sekhar

Abstract Cyber security is the major concern in today’s world. Over the past couple of decades, the internet has grown to such an extent that almost every individual living on this planet has the access to the internet today. This can be viewed as one of the major achievements in the human race, but on the flip side of the coin, this gave rise to a lot of security issues for every individual or the company that is accessing the web through the internet. Hackers have become active and are always monitoring the networks to grab every possible opportunity to attack a system and make the best fortune out of its vulnerabilities. To safeguard people’s and organization’s privacy in this cyberspace, different network intrusion detection systems have been developed to detect the hacker’s presence in the networks. These systems fall under signature based and anomaly based intrusion detection systems. This paper deals with using anomaly based intrusion detection technique to develop an automation system to both train and test supervised machine learning models, which is developed to classify real time network traffic as to whether it is malicious or not. Currently the best models by considering both detection success rate and the false positives rate are Artificial Neural Networks(ANN) followed by Support Vector Machines(SVM). In this paper, it is verified that Artificial Neural Network (ANN) based machine learning with wrapper feature selection outperforms support vector machine (SVM) technique while classifying network traffic as harmful or harmless. Initially to evaluate the performance of the system, NSL-KDD dataset is used to train and test the SVM and ANN models and finally classify real time network traffic using these models. This system can be used to carry out model building automatically on the new datasets and also for classifying the behaviour of the provided dataset without having to code.


2020 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Yaser M. Banadaki

As numerous Internet-of-Things (IoT) devices are deploying on a daily basis, network intrusion detection systems (NIDS) are among the most critical tools to ensure the protection and security of networks against malicious cyberattacks. This paper employs four machine learning algorithms: XGBoost, random forest, decision tree, and gradient boosting, and evaluates their performance in NIDS, considering the accuracy, precision, recall, and F-score. The comparative analysis conducted using the CICIDS2017 dataset reveals that the XGBoost performs better than the other algorithms reaching the predicted accuracy of 99.6% in detecting cyberattacks. XGBoost-based attack detectors also have the largest weighted metrics of F1-score, precision, and recall. The paper also studies the effect of class imbalance and the size of the normal and attack classes. The small numbers of some attacks in training datasets mislead the classifier to bias towards the majority classes resulting in a bottleneck to improving macro recall and macro F1 score. The results assist the network engineers in choosing the most effective machine learning-based NIDS to ensure network security for today’s growing IoT network traffic. 


Author(s):  
Giovanni Apruzzese ◽  
Mauro Andreolini ◽  
Luca Ferretti ◽  
Mirco Marchetti ◽  
Michele Colajanni

The incremental diffusion of machine learning algorithms in supporting cybersecurity is creating novel defensive opportunities but also new types of risks. Multiple researches have shown that machine learning methods are vulnerable to adversarial attacks that create tiny perturbations aimed at decreasing the effectiveness of detecting threats. We observe that existing literature assumes threat models that are inappropriate for realistic cybersecurity scenarios because they consider opponents with complete knowledge about the cyber detector or that can freely interact with the target systems. By focusing on Network Intrusion Detection Systems based on machine learning methods, we identify and model the real capabilities and circumstances that are necessary for an attacker to carry out a feasible and successful adversarial attack. We then apply our model to several adversarial attacks proposed in literature and highlight the limits and merits that can result in actual adversarial attacks. The contributions of this paper can help hardening defensive systems by letting cyber defenders address the most critical and real issues, and can benefit researchers by allowing them to devise novel forms of adversarial attacks based on realistic threat models.


2019 ◽  
Author(s):  
Abhishek Verma ◽  
Virender Ranga

In the era of digital revolution, a huge amount of data is being generated from different networks on a daily basis. Security of this data is of utmost importance. Intrusion Detection Systems are found to be one the best solutions towards detecting intrusions. Network Intrusion Detection Systems are employed as a defence system to secure networks. Various techniques for the effective development of these defence systems have been proposed in the literature. However, the research on the development of datasets used for training and testing purpose of such defence systems is equally concerned. Better datasets improve the online and offline intrusion detection capability of detection model. Benchmark datasets like KDD 99 and NSL-KDD cup 99 obsolete and do not contain network traces of modern attacks like Denial of Service, hence are unsuitable for the evaluation purpose. In this work, a detailed analysis of CIDDS-001 dataset has been done and presented. We have used different well-known machine learning techniques for analysing the complexity of the dataset. Eminent evaluation metrics including Detection Rate, Accuracy, False Positive Rate, Kappa statistics, Root mean squared error have been used to show the performance of employed machine learning techniques.


2019 ◽  
Author(s):  
Abhishek Verma ◽  
Virender Ranga

In the era of digital revolution, a huge amount of data is being generated from different networks on a daily basis. Security of this data is of utmost importance. Intrusion Detection Systems are found to be one the best solutions towards detecting intrusions. Network Intrusion Detection Systems are employed as a defence system to secure networks. Various techniques for the effective development of these defence systems have been proposed in the literature. However, the research on the development of datasets used for training and testing purpose of such defence systems is equally concerned. Better datasets improve the online and offline intrusion detection capability of detection model. Benchmark datasets like KDD 99 and NSL-KDD cup 99 obsolete and do not contain network traces of modern attacks like Denial of Service, hence are unsuitable for the evaluation purpose. In this work, a detailed analysis of CIDDS-001 dataset has been done and presented. We have used different well-known machine learning techniques for analysing the complexity of the dataset. Eminent evaluation metrics including Detection Rate, Accuracy, False Positive Rate, Kappa statistics, Root mean squared error have been used to show the performance of employed machine learning techniques.


2020 ◽  
Vol 3 (2) ◽  
pp. 196-206
Author(s):  
Mausumi Das Nath ◽  
◽  
Tapalina Bhattasali

Due to the enormous usage of the Internet, users share resources and exchange voluminous amounts of data. This increases the high risk of data theft and other types of attacks. Network security plays a vital role in protecting the electronic exchange of data and attempts to avoid disruption concerning finances or disrupted services due to the unknown proliferations in the network. Many Intrusion Detection Systems (IDS) are commonly used to detect such unknown attacks and unauthorized access in a network. Many approaches have been put forward by the researchers which showed satisfactory results in intrusion detection systems significantly which ranged from various traditional approaches to Artificial Intelligence (AI) based approaches.AI based techniques have gained an edge over other statistical techniques in the research community due to its enormous benefits. Procedures can be designed to display behavior learned from previous experiences. Machine learning algorithms are used to analyze the abnormal instances in a particular network. Supervised learning is essential in terms of training and analyzing the abnormal behavior in a network. In this paper, we propose a model of Naïve Bayes and SVM (Support Vector Machine) to detect anomalies and an ensemble approach to solve the weaknesses and to remove the poor detection results


Sign in / Sign up

Export Citation Format

Share Document