scholarly journals Anodic Dissolution Mechanism of Copper in Weak Alkaline Carbonate Solutions Using Channel Flow Multi-Electrode

2001 ◽  
Vol 50 (8) ◽  
pp. 380-385 ◽  
Author(s):  
Toshifumi Hirasaki ◽  
Atsushi Nishikata ◽  
Tooru Tsuru
2009 ◽  
Vol 1242 ◽  
Author(s):  
A. Contreras ◽  
E. Sosa ◽  
M. A. Espinosa-Medina

ABSTRACTAssessment of anodic and cathodic potentials on stress corrosion cracking (SCC) of API X52 pipeline steel through slow strain rate tests (SSRT) was studied. The SSRT were carried out in a NS4 solution to simulated dilute ground water that has been found to be associated with SCC of pipelines. SSRT were performed and evaluated in air and in the NS4 solution at room temperature at an extension rate of 1×10-6 in/sec. Tests were performed at controlled electrochemical polarization potentials, both anodic and cathodic (100, 200, 400 mV) versus the open circuit corrosion potential. The results of reduction in area ratio (RAR), time to failure ratio (TFR) and plastic elongation ratio (PER) of the specimens tested in the soil solution indicate that X52 pipeline steel was susceptible to SCC at cathodic potentials. These specimens showed a brittle type of fracture with transgranular appearance. The SCC proceess and mechanism of X52 steel in the NS4 solution is mixed-controlled by both anodic dissolution and the hydrogen involvement. At positive potentials the SCC is based mainly on the anodic dissolution mechanism. When the applied potentials shifted negatively, the SCC on the steel follows mainly hydrogen embrittlement mechanism. This mechanism was confirmed through the internal cracks observed in the specimens.


1986 ◽  
Vol 8 ◽  
pp. 429-438 ◽  
Author(s):  
Tooru Tsuru ◽  
Toshiyasu Nishimura ◽  
Shiro Haruyama

2019 ◽  
Vol 6 (1) ◽  
pp. 181278
Author(s):  
Yanqing Cai ◽  
Xinggang Chen ◽  
Qian Xu ◽  
Ying Xu

The anodic dissolution behaviours of Cu, Zr and Cu–Zr alloy were analysed in LiCl–KCl at 500°C by anode polarization curve and potentiostatic polarization curve. The results show that the initial and fast-dissolving potentials of Cu are −0.50 and −0.29 V, and Zr are −1.0 and −0.88 V, respectively. But, in the Cu–Zr alloy, the initial and fast-dissolving potentials of Cu are −0.52 and −0.41 V, and Zr are −0.96 and −0.92 V, respectively. The potentials satisfy the selection dissolution principle that Zr in the alloy dissolves first, while Cu is left in the anode and is not oxidized. The passivation phenomenon of Zr is observed in the quick dissolution of Zr, while it is not observed in the Cu–Zr alloy. Moreover, from the above anodic dissolution results, potentiostatic electrolysis of Cu–Zr alloy was carried out at −0.8 V for 40 min, and the anodic dissolution mechanism and kinetics of Zr in Cu–Zr alloy were also discussed. In the initial stage, Zr dissolves as Zr 4+ ions from the alloy surface and enters into the molten salt, leaving a Cu layer called ‘dissolving layer’ on the surface of the alloy. After that, another layer between the matrix and ‘dissolving layer’ called ‘diffusion–dissolution layer’ appears. Zr diffuses in the alloy matrix and dissolves as Zr 4+ ions on the surface of the ‘diffusion–dissolution layer’ continuously, and Zr 4+ ions diffuse through the ‘dissolving layer’ and enter into the molten salt finally. In addition, the factors affecting the dissolution of Cu–Zr alloy, such as time and potential, were also investigated. The dissolution loss increases with the increasing dissolution potential and time, while the dissolution rate increases with the increasing dissolution potential and declines with the prolonging dissolution time.


Sign in / Sign up

Export Citation Format

Share Document