scholarly journals Anodic behaviour of Cu, Zr and Cu–Zr alloy in molten LiCl–KCl eutectic

2019 ◽  
Vol 6 (1) ◽  
pp. 181278
Author(s):  
Yanqing Cai ◽  
Xinggang Chen ◽  
Qian Xu ◽  
Ying Xu

The anodic dissolution behaviours of Cu, Zr and Cu–Zr alloy were analysed in LiCl–KCl at 500°C by anode polarization curve and potentiostatic polarization curve. The results show that the initial and fast-dissolving potentials of Cu are −0.50 and −0.29 V, and Zr are −1.0 and −0.88 V, respectively. But, in the Cu–Zr alloy, the initial and fast-dissolving potentials of Cu are −0.52 and −0.41 V, and Zr are −0.96 and −0.92 V, respectively. The potentials satisfy the selection dissolution principle that Zr in the alloy dissolves first, while Cu is left in the anode and is not oxidized. The passivation phenomenon of Zr is observed in the quick dissolution of Zr, while it is not observed in the Cu–Zr alloy. Moreover, from the above anodic dissolution results, potentiostatic electrolysis of Cu–Zr alloy was carried out at −0.8 V for 40 min, and the anodic dissolution mechanism and kinetics of Zr in Cu–Zr alloy were also discussed. In the initial stage, Zr dissolves as Zr 4+ ions from the alloy surface and enters into the molten salt, leaving a Cu layer called ‘dissolving layer’ on the surface of the alloy. After that, another layer between the matrix and ‘dissolving layer’ called ‘diffusion–dissolution layer’ appears. Zr diffuses in the alloy matrix and dissolves as Zr 4+ ions on the surface of the ‘diffusion–dissolution layer’ continuously, and Zr 4+ ions diffuse through the ‘dissolving layer’ and enter into the molten salt finally. In addition, the factors affecting the dissolution of Cu–Zr alloy, such as time and potential, were also investigated. The dissolution loss increases with the increasing dissolution potential and time, while the dissolution rate increases with the increasing dissolution potential and declines with the prolonging dissolution time.

2005 ◽  
Vol 66 (2-4) ◽  
pp. 619-624 ◽  
Author(s):  
Kensuke Kinoshita ◽  
Tadafumi Koyama ◽  
Tadashi Inoue ◽  
Michel Ougier ◽  
Jean-Paul Glatz

2012 ◽  
Vol 1 (8) ◽  
pp. 186 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

<p>Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.</p><p>DOI: <a href="http://dx.doi.org/10.3329/icpj.v1i8.11095">http://dx.doi.org/10.3329/icpj.v1i8.11095</a></p> <p>International Current Pharmaceutical Journal 2012, 1(8): 186-192</p>


Author(s):  
P B Parejiya ◽  
B S Barot ◽  
P K Shelat

The present study was carried out to fabricate a prolonged design for tramadol using Kollidon SR (Polyvinyl acetate and povidone based matrix retarding polymer). Matrix tablet formulations were prepared by direct compression of Kollidon SR of a varying proportion with a fixed percentage of tramadol. Tablets containing a 1:0.5 (Drug: Kollidon SR) ratio exhibited a rapid rate of drug release with an initial burst effect. Incorporation of more Kollidon SR in the matrix tablet extended the release of drug with subsequent minimization of the burst effect as confirmed by the mean dissolution time, dissolution efficiency and f2 value. Among the formulation batches, a direct relationship was obtained between release rate and the percentage of Kollidon SR used. The formulation showed close resemblance to the commercial product Contramal and compliance with USP specification. The results were explored and explained by the difference of micromeritic characteristics of the polymers and blend of drug with excipients. Insignificant effects of various factors, e.g. pH of dissolution media, ionic strength, speed of paddle were found on the drug release from Kollidon-SR matrix. The formulation followed the Higuchi kinetic model of drug release. Stability study data indicated stable character of Batch T6 after short-term stability study.


2021 ◽  
pp. 002199832110055
Author(s):  
Zeeshan Ahmad ◽  
Sabah Khan

Alumnium alloy LM 25 based composites reinforced with boron carbide at different weight fractions of 4%, 8%, and 12% were fabricated by stir casting technique. The microstructures and morphology of the fabricated composites were studied by scanning electron microscopy and energy dispersive spectroscopy. Elemental mapping of all fabricated composites were done to demonstrate the elements present in the matrix and fabricated composites. The results of microstructural analyses reveal homogenous dispersion of reinforcement particles in the matrix with some little amount of clustering found in composites reinforced with 12% wt. of boron carbide. The mechanical characterization is done for both alloy LM 25 and all fabricated composites based on hardness and tensile strength. The hardness increased from 13.6% to 21.31% and tensile strength 6.4% to 22.8% as reinforcement percentage of boron carbide particles increased from 0% to 12% wt. A fractured surface mapping was also done for all composites.


2013 ◽  
Vol 13 (3) ◽  
pp. 64-67 ◽  
Author(s):  
A. Pasieka ◽  
Z. Konopka

Abstract The method of pressure die casting of composites with AlSi11 alloy matrix reinforced with 10 vol. % of SiC particles and the analysis of the distribution of particles within the matrix is presented. The composite castings were produced at various values of the piston velocity in the second stage of injection, at diverse intensification pressure values, and various injection gate width values. The distribution of particles over the entire cross-section of the tensile specimen is shown. The index of distribution was determined on the basis of particle count in elementary measuring fields. The regression equation describing the change of the considered index was found as a function of the pressure die casting parameters. The conclusion presents an analysis of the obtained results and their interpretation.


2013 ◽  
Vol 212 ◽  
pp. 59-62 ◽  
Author(s):  
Jerzy Myalski ◽  
Jakub Wieczorek ◽  
Adam Płachta

The change of matrix and usage of the aluminum alloys designed for the metal forming in making the composite suspension allows to extend the processing possibility of this type of materials. The possibility of the metal forming of the composites obtained by mechanical mixing will extend the range of composite materials usage. Applying of the metal forming e.g. matrix forging, embossing, pressing or rolling, will allow to remove the incoherence of the structure created while casting and removing casting failures. In order to avoid the appearance of the casting failures the homogenization conditions need to be changed. Inserting the particles into the matrix influences on the shortening of the composite solidification. The type of the applied particles influenced the sedimentation process and reinforcement agglomeration in the structure of the composite. Opposite to the composites reinforced with one-phase particles applying the fasess mixture (glassy carbon and silicon carbide) triggered significant limitation in the segregation process while casting solidification. Inserting the particles into the AW-AlCu2SiMn matrix lowers the mechanical properties tension and impact value strength. The most beneficial mechanical properties were gained in case of heterofasess composites reinforced with the particle mixture of SiC and glass carbon. The chemical composition of the matrix material (AW-AlCu2SiMn) allows to increase additionally mechanical characteristics by the precipitation hardening reached through heat casting forming.


2011 ◽  
Vol 4 (2) ◽  
pp. 153-183 ◽  
Author(s):  
Diana Carter ◽  
Peredur Davies ◽  
Margaret Deuchar ◽  
María del Carmen Parafita Couto

AbstractIn this paper we compare the code-switching (CS) patterns in three bilingual corpora collected in Wales, Miami and Patagonia, Argentina. Using the Matrix Language Framework to do a clause-based analysis of a sample of data, we consider the impact of structural relationships and extra-linguistic factors on CS patterns. We find that the Matrix Language (ML) is uniform where the language pairs have contrasting word orders, as in Welsh-English (VSO-SVO) and WelshSpanish (VSO-SVO) but diverse where the word order is similar as in Spanish-English (SVO-SVO). We find that the diversity of the ML in Miami is related to the diversity of degrees of proficiency, ethnic identities, and social networks amongst members of that community, while the uniformity of the ML in Wales is related to the uniformity of these factors. This is not so clear in Patagonia, however, where there is little CS produced in conversation. We suggest that the members of the speech community use Spanish or Welsh mostly in a monolingual mode, depending on the interlocutor and the social situation.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3358 ◽  
Author(s):  
Hang Chen ◽  
Guangbao Mi ◽  
Peijie Li ◽  
Xu Huang ◽  
Chunxiao Cao

In this study, graphene-oxide (GO)-reinforced Ti–Al–Sn–Zr–Mo–Nb–Si high-temperature titanium-alloy-matrix composites were fabricated by powder metallurgy. The mixed powders with well-dispersed GO sheets were obtained by temperature-controlled solution mixing, in which GO sheets adsorb on the surface of titanium alloy particles. Vacuum deoxygenating was applied to remove the oxygen-containing groups in GO, in order to reduce the introduction of oxygen. The compact composites with refined equiaxed and lamellar α phase structures were prepared by hot isostatic pressing (HIP). The results show that in-situ TiC layers form on the surface of GO and GO promotes the precipitation of hexagonal (TiZr)6Si3 particles. The composites exhibit significant improvement in strength and microhardness. The room-temperature tensile strength, yield strength and microhardness of the composite added with 0.3 wt% GO are 9%, 15% and 27% higher than the matrix titanium alloy without GO, respectively, and the tensile strength and yield strength at 600 °C are 3% and 21% higher than the matrix alloy. The quantitative analysis indicates that the main strengthening mechanisms are load transfer strengthening, grain refinement and (TiZr)6Si3 second phase strengthening, which accounted for 48%, 30% and 16% of the improvement of room-temperature yield strength, respectively.


Sign in / Sign up

Export Citation Format

Share Document