scholarly journals Hematopoietic stem cells in co-culture with mesenchymal stromal cells - modeling the niche compartments in vitro

Haematologica ◽  
2010 ◽  
Vol 95 (4) ◽  
pp. 542-550 ◽  
Author(s):  
D. Jing ◽  
A. V. Fonseca ◽  
N. Alakel ◽  
F. A. Fierro ◽  
K. Muller ◽  
...  
Author(s):  
Valentina Orticelli ◽  
Andrea Papait ◽  
Elsa Vertua ◽  
Patrizia Bonassi Signoroni ◽  
Pietro Romele ◽  
...  

2015 ◽  
Vol 39 (10) ◽  
pp. 1099-1110 ◽  
Author(s):  
Iordanis Pelagiadis ◽  
Eftichia Stiakaki ◽  
Christianna Choulaki ◽  
Maria Kalmanti ◽  
Helen Dimitriou

Stem Cells ◽  
2001 ◽  
Vol 19 (1) ◽  
pp. 46-58 ◽  
Author(s):  
Kikuya Sugiura ◽  
Hiroko Hisha ◽  
Junji Ishikawa ◽  
Yasushi Adachi ◽  
Shigeru Taketani ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1367-1367 ◽  
Author(s):  
Patrick Wuchter ◽  
Rainer Saffrich ◽  
Wolfgang Wagner ◽  
Frederik Wein ◽  
Mario Stephan Schubert ◽  
...  

Abstract The interaction between human hematopoietic stem cells (HSC) and their niche plays a key role in regulating maintenance of “stemness” and differentiation. We have demonstrated that a feeder layer of human mesenchymal stromal cells (MSC) can serve as a surrogate model for the niche for human HSC. We could also show, MSC are intimately connected to one another by a novel kind of adhering junction, consisting of villiformto-vermiform cell projections (processus adhaerentes). With this background, we have analyzed the intercellular junctional complexes between HSC and MSC. In comparison, we also studied the cell-cell contacts between leukemia cells (LC) and MSC. MSC were derived from bone marrow aspirates from healthy voluntary donors. HSC were isolated from umbilical cord blood. Leukemia cells that were CD34+ were obtained from bone marrow aspirates from patients suffering from acute myeloid leukemia at the time point of initial diagnosis. After 24–48 hours of co-cultivation, we stained the cellular contacts with a panel of antibodies specific for various components of tight, gap and adherens junctions. Using advanced confocal laser scanning microscopy in combination with deconvolution and volume rendering software, we were able to produce 3D-images of intercellular junctions between HSC/MSC as well as between LC/MSC. To examine the specific function of N-cadherin, we analyzed the effect of siRNA knock down of N-cadherin in MSC upon co-cultures of HSC and MSC. Intercellular connections between HSC and MSC are mainly characterized by podia formation of the HSC linking to the adjacent MSC. At the intimate contact zone to the MSC, we have identified the cytoplasmic plaque proteins alpha- and beta-catenin, co-localized with the transmembrane glycoprotein N-cadherin. Additionally, we compared these findings with a similar setting consisting of human LC co-cultured with feeder-layer of MSC. Our results demonstrated that in comparison to HSC, the proportion of leukemia cells adherent to the feeder-layer is significantly lower and podia formation is less frequent (ratio 1:3). However, the mechanism of adhesion through cadherin-catenin-complex has remained the same. At a functional level, we found that siRNA knock down of N-cadherin in MSC resulted in decreased adhesion of HSC to MSC and in a reduction of cell divisions of HSC. These results confirm that direct cellular contact via N-cadherin-based junctions is essential for homing and adhesion of HSC to the cellular niche and subsequently for the regulation of self-renewal versus differentiation in HSC.


Stem Cells ◽  
2016 ◽  
Vol 34 (9) ◽  
pp. 2354-2367 ◽  
Author(s):  
Shweta Singh ◽  
Ranjita Devi Moirangthem ◽  
Anuradha Vaidya ◽  
Sapana Jalnapurkar ◽  
Lalita Limaye ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3866-3866
Author(s):  
Masao Tsukada ◽  
Satoshi Yamazaki ◽  
Yasunori Ota ◽  
Hiromitsu Nakauchi

Abstract Introduction Generation of engraftable hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) has long been thought an ultimate goal in the field of hematology. Numerous in vitro differentiation protocols, including trans-differentiation and forward programming approaches, have been reported but have so far failed to generate fully functional HSCs. We have previously demonstrated proof-of-concept for the in vivo generation of fully functional HSCs from induced PSCs (iPSCs) through teratoma formation (Suzuki et al., 2013). However, this method is time-consuming (taking over two months), HSCs are generated at low frequencies, and additionally require co-injection on OP9 stromal cells and SCF/TPO cytokines. Here, we present optimization of in vivo HSC generation via teratoma formation for faster, higher-efficiency HSC generation and without co-injection of stromal cells or cytokines. Results First, we screened reported in vitro trans-differentiation and forward programming strategies for their ability to generate HSCs in vivo within the teratoma assay. We tested iPSCs transduced with the following dox-inducible TF overexpression vectors: (1) Gfi1b, cFOS and Gata2 (GFG), which induce hemogenic endothelial-like cells from fibroblast (Pereira et al.,2013); (2) Erg, HoxA9 and Rora (EAR), which induce short-term hematopoietic stem/progenitor cell (HSPC) formation during embryoid body differentiation (Doulatov et,al., 2013); and (3) Foxc1, which is highly expressed the CAR cells, a critical cell type for HSC maintenance (Oomatsu et al.,2014). We injected iPSCs into recipient mice, without co-injection of stromal cells or cytokines, and induced TF expression after teratoma formation by dox administration. After four weeks, GFG-derived teratomas contained large numbers of endothelial-like and epithelial-like cells, and importantly GFG-derived hematopoietic cells could also be detected. EAR-teratomas also generated hematopoietic cells, although at lower frequencies. By contrast, hematopoietic cells were not detected in control teratomas or Foxc1-teratomas. Through use of iPSCs generated from Runx1-EGFP mice (Ng et al. 2010), and CUBIC 3D imaging technology (Susaki et al. 2014), we were further able to demonstrate that GFG-derived hematopoietic cells were generated through a haemogenic endothelium precursor. Next, we assessed whether HSPC-deficient recipient mice would allow greater expansion of teratoma-derived HSCs. This was achieved by inducing c-kit deletion within the hematopoietic compartment of recipient mice (Kimura et al., 2011) and resulted in a ten-fold increase in the peripheral blood frequency of iPSC-derived hematopoietic cells. We further confirmed similar increases in iPSC-derived bone marrow cells, and in vivo HSC expansion, through bone marrow transplantation assays. Finally, we have been able to shorten the HSC generation time in this assay by five weeks through use of transplantable teratomas, rather than iPSCs. Conclusions We have demonstrated that GFG-iPSCs induce HSC generation within teratomas, via a hemogenic endothelium precursor, and that use of HSPC-deficient recipient mice further promotes expansion of teratoma-derived HSCs. These modifications now allow us to generate engraftable HSCs without co-injection of stromal cells or cytokines. Additionally, use of transplantable teratomas reduced HSC generation times as compared with the conventional assay. These findings suggest that our in vivo system provides a promising strategy to generate engraftable HSCs from iPSCs. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document