clonogenic potential
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 50)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Qi Li ◽  
Lidong Sun ◽  
Li Liu ◽  
Qingsen Ran ◽  
Xinke Du ◽  
...  

Metastasis is a multistep process that depends on the interactions between tumor cells and their microenvironment. Macrophages in the tumor microenvironment show high polarization plasticity and have a paradoxical role in cancer progression. Hijacked by tumor-promoting signals, the polarization status of macrophages was pathologically disturbed and believed to be the decisive mechanism forcing the progression of metastasis. In this study, we explored the immunological activity of Chamaejasmin B (ICJ), a previously proved inhibitor for metastasis, in macrophages from metastatic microenvironment. When intravenously injected of 4T1 cells in mice, ICJ significantly inhibited its metastatic outgrowth. Taking tumor cell and macrophage as a functional integrity, an adoptive transfer model was established in vitro to exclude the direct effect of ICJ on tumor. The findings suggest a dual influence of ICJ on both tumors and macrophages, as indicated by the rebalance of macrophage polarization and suppression of clonogenic potential in tumor cells. Mechanistically, ICJ redirected M2-dominant polarization of tumor-associated macrophage in an IL-4-mTOR-dependent manner. Collectively, our study revealed that ICJ rebalanced macrophage polarization in malignant microenvironment and showed promising effect in suppressing metastatic outgrowth in breast cancer model.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2458
Author(s):  
Iris Maria Forte ◽  
Paola Indovina ◽  
Serena Montagnaro ◽  
Aurora Costa ◽  
Carmelina Antonella Iannuzzi ◽  
...  

Malignant mesothelioma (MM) is an aggressive asbestos-related cancer, against which no curative modalities exist. Oncolytic virotherapy is a promising therapeutic approach, for which MM is an ideal candidate; indeed, the pleural location provides direct access for the intra-tumoral injection of oncolytic viruses (OVs). Some non-human OVs offer advantages over human OVs, including the non-pathogenicity in humans and the absence of pre-existing immunity. We previously showed that caprine herpesvirus 1 (CpHV-1), a non-pathogenic virus for humans, can kill different human cancer cell lines. Here, we assessed CpHV-1 effects on MM (NCI-H28, MSTO, NCI-H2052) and non-tumor mesothelial (MET-5A) cells. We found that CpHV-1 reduced cell viability and clonogenic potential in all MM cell lines without affecting non-tumor cells, in which, indeed, we did not detect intracellular viral DNA after treatment. In particular, CpHV-1 induced MM cell apoptosis and accumulation in G0/G1 or S cell cycle phases. Moreover, CpHV-1 strongly synergized with cisplatin, the drug currently used in MM chemotherapy, and this agent combination did not affect normal mesothelial cells. Although further studies are required to elucidate the mechanisms underlying the selective CpHV-1 action on MM cells, our data suggest that the CpHV-1-cisplatin combination could be a feasible strategy against MM.


2021 ◽  
Author(s):  
Agnieszka Smieszek ◽  
Klaudia Marcinkowska ◽  
Ariadna Pielok ◽  
Mateusz Sikora ◽  
Lukas Valihrach ◽  
...  

AbstractThe study aimed to investigate the influence of obesity on cellular features of equine endometrial progenitor cells (Eca EPCs), including viability, proliferation capacity, mitochondrial metabolism, and oxidative homeostasis. Eca EPCs derived from non-obese (Non-OB) and obese (OB) mares were characterised by cellular phenotype and multipotency.Obesity-induced changes in the activity of Eca EPCs include the decline of their proliferative activity, clonogenic potential, mitochondrial metabolism and enhanced oxidative stress. Eca EPCs isolated from obese mares were characterised by an increased occurrence of early apoptosis, loss of mitochondrial dynamics, and senescence-associated phenotype. Attenuated metabolism of Eca EPCs OB was related to increased expression of pro-apoptotic markers (CASP9, BAX, P53, P21), enhanced expression of OPN, PI3K and AKT, simultaneously with decreased signalling stabilising cellular homeostasis (including mitofusin, SIRT1, FOXP3).Obesity alters functional features and self-renewal potential of endometrial progenitor cells. The impaired cytophysiology of progenitor cells from obese endometrium predict lower regenerative capacity if used as autologous transplants.


2021 ◽  
Vol 2 (4) ◽  
pp. 100880
Author(s):  
Simone Di Franco ◽  
Le Zhang ◽  
Miriam Gaggianesi ◽  
Melania Lo Iacono ◽  
Jan Paul Medema ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Murat Erdem ◽  
İbrahim Ozgul ◽  
Didem Naz Dioken ◽  
Irmak Gurcuoglu ◽  
Sezen Guntekin Ergun ◽  
...  

AbstractRoles of HNRNPA1 are beginning to emerge in cancers; however, mechanisms causing deregulation of HNRNPA1 function remain elusive. Here, we describe an isoform switch between the 3′-UTR isoforms of HNRNPA1 in breast cancers. We show that the dominantly expressed isoform in mammary tissue has a short half-life. In breast cancers, this isoform is downregulated in favor of a stable isoform. The stable isoform is expressed more in breast cancers, and more HNRNPA1 protein is synthesized from this isoform. High HNRNPA1 protein levels correlate with poor survival in patients. In support of this, silencing of HNRNPA1 causes a reversal in neoplastic phenotypes, including proliferation, clonogenic potential, migration, and invasion. In addition, silencing of HNRNPA1 results in the downregulation of microRNAs that map to intragenic regions. Among these miRNAs, miR-21 is known for its transcriptional upregulation in breast and numerous other cancers. Altogether, the cancer-specific isoform switch we describe here for HNRNPA1 emphasizes the need to study gene expression at the isoform level in cancers to identify novel cases of oncogene activation.


2021 ◽  
Vol 10 (23) ◽  
pp. 5606
Author(s):  
Michele Massimino ◽  
Paolo Vigneri ◽  
Stefania Stella ◽  
Elena Tirrò ◽  
Maria Stella Pennisi ◽  
...  

Background: The management of Philadelphia Chromosome-positive (Ph+) hematological malignancies is strictly correlated to the use of BCR-ABL1 tyrosine kinase inhibitors (TKIs). However, these drugs do not induce leukemic stem cells death and their persistence may generate a disease relapse. Published reports indicated that Venetoclax, a selective BCL2 inhibitor, could be effective in Ph+ diseases, as BCL2 anti-apoptotic activity is modulated by BCR-ABL1 kinase. We, therefore, investigated if BCL2 inhibition, alone or combined with Nilotinib, a BCR-ABL1 inhibitor, affects the primitive and committed Ph+ cells survival. Methods: We used Ph+ cells isolated from leukemic patients at diagnosis. To estimate the therapeutic efficacy of BCL2 and BCR-ABL1 inhibition we employed long-term culture, proliferation and apoptosis assay. Immunoblot was used to evaluate the ability of treatment to interfere with the down-stream targets of BCR-ABL1. Results: Blocking BCL2, we observed reduced proliferation and clonogenic potential of CML CD34-positive cells and this cytotoxicity was improved by combination with BCR-ABL1 inhibitor. However, BCL2 inhibition, alone or in combination regiment with BCR-ABL1 inhibitor, did not reduce the self-renewal of primitive leukemic cells, while strongly induced cell death on primary Ph+ Acute Lymphoblastic Leukemia (ALL). Conclusion: Our results suggest that primitive CML leukemic cells are not dependent on BCL2 for their persistence and support that committed CML and Ph + ALL cells are dependent by BCL2 and BCR-ABL1 cooperation for their survival. The antileukemic activity of BCL2 and BCR-ABL1 dual targeting may be a useful therapeutic strategy for Ph+ ALL patients.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2246-2246
Author(s):  
Timo Jaquet ◽  
Christian Preisinger ◽  
Marlena Bütow ◽  
Stefan Tillmann ◽  
Nicolas Chatain ◽  
...  

Abstract Introduction: The unfolded protein response (UPR) is a stress sensing signaling network that is activated upon endoplasmic reticulum (ER) stress, a condition characterized by an accumulation of mis- and unfolded proteins in the ER. To retain a functional cell metabolism, UPR activation increases protein folding and degradation. Acute myeloid leukemia (AML) stem cells are prone to develop ER stress, due to their oncogene-driven metabolism and the bone marrow niche, where they face stressors like hypoxia or nutrient fluctuations. Our preliminary work showed enhanced UPR gene expression levels, especially of IRE1α and XBP1, in different AML subtypes. Patients with high XBP1 mRNA expression had an inferior overall survival rate compared to patients with low XBP1 mRNA expression. Aims: We studied the role of elevated UPR signaling in AML therapy resistance and assessed the therapeutic potential of IRE1α-XBP1 inhibitor STF-083010 (STF) as a new strategy in different AML subtypes, including FLT3-ITD + AML. Methods: Human MV4-11 (FLT3-ITD), RS4-11 (FLT3 wildtype; WT), NB-4 (PML-RARα), THP-1 (MLLr) cells, and murine 32D cells transduced with FLT3-ITD or FLT3 WT were analyzed via western blot and RT-PCR. Metabolic activity was assessed by MTT assay, cell death and apoptosis were measured with propidium iodide (PI) or Annexin V staining using flow cytometry. FLT3 cell surface expression was measured via flow cytometry. The clonogenic potential was determined in CFU assays, using patient-derived mononuclear and CD34 + cells. For hypoxic experiments, MV4-11 cells were cultivated under hypoxia (3 % O 2) and cells were subjected to phosphoproteomic analysis, which was performed by mass spectrometry. Conditional Mx1-Cre/XBP1 fl/fl knockout mice were generated and deletion of XBP1 was induced by IP injection of Polyinosinic-polycytidylic acid (Poly(I:C)). Bone marrow and spleen cells were analyzed via flow cytometry and RT-PCR. Results: Treatment with FLT3 TKI AC220 specifically enhanced IRE1α mRNA (9.3-fold, p<0.05) and increased IRE1α protein in 32D FLT3-ITD cells. Likewise, the percentage of dead cells was significantly elevated in 32D FLT3-ITD upon IRE1α inhibition by STF compared to 32D FLT3 WT cells. Treatment with STF prevented XBP1 splicing and reduced the metabolic activity of human AML cell lines in a dose-dependent manner. Furthermore, IRE1α inhibition significantly induced apoptosis in human MV4-11 (6-fold, p<0.05), NB-4 (8-fold, p<0.01) and THP-1 (7-fold, p<0.01) cells and reduced their clonogenic potential. The combination of STF and AC220 strongly enhanced the percentage of apoptotic cells in MV4-11 cells compared to single treatments (by 3-fold, p<0.001). This strong induction of cell death was specific for FLT3-ITD + MV4-11 cells and not observed in FLT3 WT + RS4-11 cells. Similarly, the clonogenic potential of MV4-11 cells and FLT3-ITD + AML mononuclear patient cells was significantly decreased by the combinatorial treatment, while healthy donor cells were not affected. Likewise, conditional XBP1 knockout did not significantly alter normal hematopoiesis in mice. Hypoxia further enhanced IRE1α signaling in MV4-11 cells and strongly reduced the efficacy of AC220 (normoxia: 58.4-fold induction of dead cells, p<0.01; hypoxia: 2.2-fold induction, p>0.05). Analysis of phosphoproteomics revealed a less active FLT3 signaling under hypoxia. Intriguingly, the combination of IRE1α and FLT3 inhibition overcame the resistance towards AC220 under hypoxia and significantly induced cell death. Conclusion: IRE1α-XBP1 signaling is activated in different AML subtypes including FLT3-ITD + and is further enhanced by hypoxia present in the bone marrow niche. Targeting IRE1α in FLT3-ITD + cells effectively decreases clonogenic growth and induces apoptosis. Our data demonstrate that hypoxia-mediated resistance against AC220 can be overcome by simultaneous IRE1α inhibition. Genetic deletion of XBP1 does not harm steady-state murine hematopoiesis, rendering XBP1 an excellent therapeutic target. Disclosures Koschmieder: CTI: Membership on an entity's Board of Directors or advisory committees, Other; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: (e.g. travel support); BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: (e.g. travel support); Baxalta: Membership on an entity's Board of Directors or advisory committees, Other; Incyte: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: (e.g. travel support); AOP Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: (e.g. travel support), Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: (e.g. travel support); Shire: Honoraria, Other; Image Biosciences: Other: Travel support; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: (e.g. travel support), Research Funding; Geron: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: (e.g. travel support), Research Funding; Karthos: Other: Travel support; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: (e.g. travel support); Alexion: Other: Travel support; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees, Other: Travel support; Abbvie: Other: Travel support; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees. Brümmendorf: Bristol Myers: Research Funding; Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria; Novartis: Honoraria, Patents & Royalties, Research Funding; Repeat Diagnostics: Research Funding; Takepart Media: Honoraria.


2021 ◽  
Vol 14 (11) ◽  
pp. 1079
Author(s):  
Radoslaw Kitel ◽  
Anna Byczek-Wyrostek ◽  
Katarzyna Hopko ◽  
Anna Kasprzycka ◽  
Krzysztof Walczak

The pharmacological effects of carbon to silicon bioisosteric replacements have been widely explored in drug design and medicinal chemistry. Here, we present a systematic investigation of the impact of different silyl groups on the anticancer activity of mucobromic acid (MBA) bearing furan-2(5H)-one core. We describe a comprehensive characterization of obtained compounds with respect to their anticancer potency and selectivity towards cancer cells. All four novel compounds exert stronger antiproliferative activity than MBA. Moreover, 3b induce apoptosis in colon cancer cell lines. A detailed investigation of the mechanism of action revealed that 3b activity stems from the down-regulation of survivin and the activation of caspase-3. Furthermore, compound 3b attenuates the clonogenic potential of HCT-116 cells. Interestingly, we also found that depending on the type of the silyl group, compound selectivity towards cancer cells could be precisely controlled. Collectively, we demonstrated the utility of silyl groups for adjusting both the potency and selectivity of silicon-containing compounds. These data reveal a link between the types of silyl group and compound potency, which could have bearings for the design of novel silicon-based anticancer drugs.


Author(s):  
Jade Tassey ◽  
Arijita Sarkar ◽  
Ben Van Handel ◽  
Jinxiu Lu ◽  
Siyoung Lee ◽  
...  

Cartilage tissue is comprised of extracellular matrix and chondrocytes, a cell type with very low cellular turnover in adults, providing limited capacity for regeneration. However, in development a significant number of chondrocytes actively proliferate and remodel the surrounding matrix. Uncoupling the microenvironmental influences that determine the balance between clonogenic potential and terminal differentiation of these cells is essential for the development of novel approaches for cartilage regeneration. Unfortunately, most of the existing methods are not applicable for the analysis of functional properties of chondrocytes at a single cell resolution. Here we demonstrate that a novel 3D culture method provides a long-term and permissive in vitro niche that selects for highly clonogenic, colony-forming chondrocytes which maintain cartilage-specific matrix production, thus recapitulating the in vivo niche. As a proof of concept, clonogenicity of Sox9IRES–EGFP mouse chondrocytes is almost exclusively found in the highest GFP+ fraction known to be enriched for chondrocyte progenitor cells. Although clonogenic chondrocytes are very rare in adult cartilage, we have optimized this system to support large, single cell-derived chondrogenic organoids with complex zonal architecture and robust chondrogenic phenotype from adult pig and human articular chondrocytes. Moreover, we have demonstrated that growth trajectory and matrix biosynthesis in these organoids respond to a pro-inflammatory environment. This culture method offers a robust, defined and controllable system that can be further used to interrogate the effects of various microenvironmental signals on chondrocytes, providing a high throughput platform to assess genetic and environmental factors in development and disease.


2021 ◽  
Vol 22 (19) ◽  
pp. 10810
Author(s):  
Dema Ali ◽  
Dana Alhattab ◽  
Hanan Jafar ◽  
Malak Alzubide ◽  
Nour Sharar ◽  
...  

The stemness in keratinocyte stem cells (KSCs) is determined by their gene expression patterns. KSCs are crucial in maintaining epidermal homeostasis and wound repair and are widely used candidates for therapeutic applications. Although several studies have reported their positive identifiers, unique biomarkers for KSCs remain elusive. Here, we aim to identify potential candidate stem cell markers. Human epidermal keratinocytes (HEKs) from neonatal foreskin tissues were isolated and cultured. Single-cell clonal analysis identified and characterized three types of cells: KSCs (holoclones), transient amplifying cells (TACs; meroclones), and differentiated cells (DSCs; paraclones). The clonogenic potential of KSCs demonstrated the highest proliferation potential of KSCs, followed by TACs and DSCs, respectively. Whole-transcriptome analysis using microarray technology unraveled the molecular signatures of these cells. These results were validated by quantitative real-time polymerase chain reaction and flow cytometry analysis. A total of 301 signature upregulated and 149 downregulated differentially expressed genes (DEGs) were identified in the KSCs, compared to TACs and DSCs. Furthermore, DEG analyses revealed new sets of genes related to cell proliferation, cell adhesion, surface makers, and regulatory factors. In conclusion, this study provides a useful source of information for the identification of potential SC-specific candidate markers.


Sign in / Sign up

Export Citation Format

Share Document