scholarly journals GNE-related thrombocytopenia: evidence for a mutational hotspot in the ADP/substrate domain of the GNE bifunctional enzyme

Haematologica ◽  
2021 ◽  
Author(s):  
Roberta Bottega ◽  
Antonio Marzollo ◽  
Maddalena Marinoni ◽  
Emmanouil Athanasakis ◽  
Ilaria Persico ◽  
...  
Keyword(s):  

Not available.

1998 ◽  
Vol 253 (3) ◽  
pp. 720-729 ◽  
Author(s):  
Edson L. Kemper ◽  
Germano Cord-Neto ◽  
Adriana N. Capella ◽  
Marymar Goncalves-Butruile ◽  
Ricardo A. Azevedo ◽  
...  

1995 ◽  
Vol 309 (1) ◽  
pp. 119-125 ◽  
Author(s):  
J L Rosa ◽  
J X Pérez ◽  
F Ventura ◽  
A Tauler ◽  
J Gil ◽  
...  

The effect of cyclic AMP (cAMP)-dependent phosphorylation and ADP-ribosylation on the activities of the rat liver bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2), was investigated in order to determine the role of the N-terminus in covalent modification of the enzyme. The bifunctional enzyme was demonstrated to be a substrate in vitro for arginine-specific ADP-ribosyltransferase: 2 mol of ADP-ribose was incorporated per mol of subunit. The Km values for NAD+ and PFK-2/FBPase-2 were 14 microM and 0.4 microM respectively. A synthetic peptide (Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser-Ser-Ile-Pro-Gln) corresponding to the site phosphorylated by cAMP-dependent protein kinase was ADP-ribosylated on all three arginine residues. Analysis of ADP-ribosylation of analogue peptides containing only two arginine residues, with the third replaced by alanine, revealed that ADP-ribosylation occurred predominantly on the two most C-terminal arginine residues. Sequencing of the ADP-ribosylated native enzyme also demonstrated that the preferred sites were at Arg-29 and Arg-30, which are just N-terminal to Ser-32, whose phosphorylation is catalysed by cAMP-dependent protein kinase (PKA). ADP-ribosylation was independent of the phosphorylation state of the enzyme. Furthermore, ADP-ribosylation of the enzyme decreased its recognition by liver-specific anti-bifunctional-enzyme antibodies directed to its unique N-terminal region. ADP-ribosylation of PFK-2/FBPase-2 blocked its phosphorylation by PKA, and decreased its PFK-2 activity, but did not alter FBPase-2 activity. In contrast, cAMP-dependent phosphorylation inhibited the kinase and activated the bisphosphatase. These results demonstrate that ADP-ribosylation of arginine residues just N-terminal to the site phosphorylated by PKA modulate PFK-2 activity by an electrostatic and/or steric mechanism which does not involved uncoupling of N- and C-terminal interactions as seen with cAMP-dependent phosphorylation.


Author(s):  
Yuqiao Zhang ◽  
Tingting Yao ◽  
Yuechen Jiang ◽  
Huayue Li ◽  
Weicheng Yuan ◽  
...  

Cyclodipeptide synthases (CDPSs) catalyse the formation of cyclodipeptides using aminoacylated-tRNAs as substrates and have great potentials in the production of diverse 2,5-diketopiperazines (2,5-DKPs). Genome mining of Streptomyces leeuwenhoekii NRRL B-24963 revealed a two-gene locus saz encoding a CDPS SazA and a unique fused enzyme SazB harboring two domains: phytoene-synthase-like prenyltransferase (PT) and methyltransferase (MT). Heterologous expression of the saz gene(s) in Streptomyces albus J1074 led to the production of four prenylated indole alkaloids, among which streptoazines A-C (3–5) are new compounds. Expression of different gene combinations showed that the SazA catalyzes the formation of cyclo (L-Trp-L-Trp) (cWW, 1), followed by consecutive prenylation and methylation by SazB. Biochemical assays demonstrated that SazB is a bifunctional enzyme, catalyzing sequential C3/C3’-prenylation(s) by SazB-PT and N1/N1’-methylation(s) by SazB-MT. Of note substrate selectivity of SazB-PT and SazB-MT was probed, revealing the stringent specificity of SazB-PT but relative flexibility of SazB-MT. IMPORTANCE Natural products with 2,5-DKP skeleton have long sparked the interest in drug discovery and development. Recent advances in microbial genome sequencing have revealed that the potentials of CDPS-dependent pathways encoding new 2,5-DKPs are underexplored. In this study, we report the genome mining of a new CDPS-containing two-gene operon and activation of this cryptic gene cluster through heterologous expression, leading to the discovery of four indole 2,5-DKP alkaloids. The cWW-synthesizing CDPS SazA and the unusual PT-MT fused enzyme SazB were characterized. Our results expand the repertoire of CDPSs and associated tailoring enzymes, setting the stage for accessing diverse prenylated alkaloids using synthetic biology strategies.


Sign in / Sign up

Export Citation Format

Share Document