saccharopine dehydrogenase
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 3)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 8 (1) ◽  
pp. 37
Author(s):  
Zili Song ◽  
Maoqiang He ◽  
Ruilin Zhao ◽  
Landa Qi ◽  
Guocan Chen ◽  
...  

As an indispensable essential amino acid in the human body, lysine is extremely rich in edible mushrooms. The α-aminoadipic acid (AAA) pathway is regarded as the biosynthetic pathway of lysine in higher fungal species in Agaricomycetes. However, there is no deep understanding about the molecular evolutionary relationship between lysine biosynthesis and species in Agaricomycetes. Herein, we analyzed the molecular evolution of lysine biosynthesis in Agaricomycetes. The phylogenetic relationships of 93 species in 34 families and nine orders in Agaricomycetes were constructed with six sequences of LSU, SSU, ITS (5.8 S), RPB1, RPB2, and EF1-α datasets, and then the phylogeny of enzymes involved in the AAA pathway were analyzed, especially homocitrate synthase (HCS), α-aminoadipate reductase (AAR), and saccharopine dehydrogenase (SDH). We found that the evolution of the AAA pathway of lysine biosynthesis is consistent with the evolution of species at the order level in Agaricomycetes. The conservation of primary, secondary, predicted tertiary structures, and substrate-binding sites of the enzymes of HCS, AAR, and SDH further exhibited the evolutionary conservation of lysine biosynthesis in Agaricomycetes. Our results provide a better understanding of the evolutionary conservation of the AAA pathway of lysine biosynthesis in Agaricomycetes.


2019 ◽  
Vol 59 (9) ◽  
pp. 890-900 ◽  
Author(s):  
Jianyu Liu ◽  
Qiaozhen Li ◽  
Peiyu Jiang ◽  
Zhen Xu ◽  
Dan Zhang ◽  
...  

2018 ◽  
Vol 218 (2) ◽  
pp. 580-597 ◽  
Author(s):  
Junxiang Zhou ◽  
Xin Wang ◽  
Min Wang ◽  
Yuwei Chang ◽  
Fengxia Zhang ◽  
...  

Amino acid catabolism is frequently executed in mitochondria; however, it is largely unknown how aberrant amino acid metabolism affects mitochondria. Here we report the requirement for mitochondrial saccharopine degradation in mitochondrial homeostasis and animal development. In Caenorhbditis elegans, mutations in the saccharopine dehydrogenase (SDH) domain of the bi-functional enzyme α-aminoadipic semialdehyde synthase AASS-1 greatly elevate the lysine catabolic intermediate saccharopine, which causes mitochondrial damage by disrupting mitochondrial dynamics, leading to reduced adult animal growth. In mice, failure of mitochondrial saccharopine oxidation causes lethal mitochondrial damage in the liver, leading to postnatal developmental retardation and death. Importantly, genetic inactivation of genes that raise the mitochondrial saccharopine precursors lysine and α-ketoglutarate strongly suppresses SDH mutation-induced saccharopine accumulation and mitochondrial abnormalities in C. elegans. Thus, adequate saccharopine catabolism is essential for mitochondrial homeostasis. Our study provides mechanistic and therapeutic insights for understanding and treating hyperlysinemia II (saccharopinuria), an aminoacidopathy with severe developmental defects.


2015 ◽  
Vol 105 (4) ◽  
pp. 390-398 ◽  
Author(s):  
P.-J. Wan ◽  
L. Yang ◽  
S.-Y. Yuan ◽  
Y.-H. Tang ◽  
Q. Fu ◽  
...  

AbstractThe brown planthopper Nilaparvata lugens is a serious phloem-feeding pest of rice in China. The current study focuses on a saccharopine dehydrogenase (SDH) that catalyzes the penultimate reaction in biosynthesis of the amino acid lysine (Lys), which plays a role in insect growth and carnitine production (as a substrate). The protein, provisionally designated as NlylsSDH [a SDH derived from yeast-like symbiont (YLS) in N. lugens], had a higher transcript level in abdomens, compared with heads, wings, legs and thoraces, which agrees with YLS distribution in N. lugens. Ingestion of Nlylssdh targeted double-stranded RNA (dsNlylssdh) for 5, 10 and 15 days decreased the mRNA abundance in the hoppers by 47, 70 and 31%, respectively, comparing with those ingesting normal or dsegfp diets. Nlylssdh knockdown slightly decreased the body weights, significantly delayed the development of females, and killed approximately 30% of the nymphs. Moreover, some surviving adults showed two apparent phenotypic defects: wing deformation and nymphal cuticles remained on tips of the legs and abdomens. The brachypterours/macropterours and sex ratios (female/male) of the adults on the dsRNA diet were lowered compared with the adults on diets without dsRNA. These results suggest that Nlylssdh encodes a functional SDH protein. The adverse effect of Nlylssdh knockdown on N. lugens implies the importance of Lys in hopper development. This study provides a proof of concept example that Nlylssdh could serve as a possible dsRNA-based pesticide for planthopper control.


2013 ◽  
Vol 44 ◽  
pp. 17-25 ◽  
Author(s):  
Xiang Sheng ◽  
Jun Gao ◽  
Yongjun Liu ◽  
Chengbu Liu

Biochemistry ◽  
2012 ◽  
Vol 51 (4) ◽  
pp. 857-866 ◽  
Author(s):  
Vidya Prasanna Kumar ◽  
Leonard M. Thomas ◽  
Kostyantyn D. Bobyk ◽  
Babak Andi ◽  
Paul F. Cook ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document