scholarly journals Physical and Electrochemical Characterization of Modified Graphite Nanoparticles-Phosphotungstic Acid-Nafion on Glassy Carbon Electrode for Bisphenol A Determination

2020 ◽  
Vol 11 (2) ◽  
pp. 9266-9277

A simple and rapid electrochemical sensor based on modified graphite nanoparticle with phosphotungstic acid and Nafion (GN–PTA–nafion) on glassy carbon electrode (GCE) has been developed for detecting bisphenol A (BPA). The GN was characterized using a scanning electron microscope (SEM) and X-ray diffractometer (XRD), while the modified GCE was characterized using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Several parameters such as GN concentration, scan rate, equilibrium time, and pH of phosphate buffer were optimized in this study. The GN–PTA–Nafion modified GCE that consists of graphite nanoparticle with a large surface area showed better and faster electron transfer, whereas the phosphotungstic acid (PTA) increased the sensitivity of the electrode for BPA detection. Good electrochemical performances for analyzing BPA, with a detection limit of 0.3995 mol L-1, as well as good reproducibility (RSD 2.51%) were obtained. The modified electrode showed that it had short analysis time, inexpensive and good sensitivity for BPA detection.

2017 ◽  
Vol 21 (04-06) ◽  
pp. 295-301 ◽  
Author(s):  
Michal Falkowski ◽  
Tomasz Rebis ◽  
Jaroslaw Piskorz ◽  
Lukasz Popenda ◽  
Stefan Jurga ◽  
...  

We report on the synthesis, MS, UV-vis, NMR, HPLC and electrochemical characterization of magnesium sulfanyl porphyrazine with 2-[2-(4-nitrophenoxy)ethoxy]ethylsulfanyl substituents in the periphery. The electrochemical properties of novel macrocycle were studied by cyclic voltammetry and differential pulse voltammetry in non-aqueous electrolyte. The experimental data indicated the occurrence of clearly defined four redox couples corresponded to one-electron reactions of the [Formula: see text]-conjugated porphyrazine ring and substituents in the periphery. Multiwalled carbon nanotube/sulfanyl porphyrazine hybrids deposited on a glassy carbon electrode allowed for the evaluation of the effect of nitro peripheral groups on the electrochemical properties. The electrochemical behavior of immobilized nitro porphyrazine was consistent with the reduction mechanism for the various arylnitro compounds in aqueous media, with two processes characteristic of the redox transitions of the arylnitro group to the corresponding arylhydroxylamine and/or arylhydroxylamine–arylnitroso groups.


2021 ◽  
Author(s):  
Zhiyuan Sun ◽  
Qin Xiao ◽  
Jingjing Tang ◽  
Qianfen Zhuang ◽  
Yong Wang

A ratiometric electrochemical sensor for bisphenol A (BPA) detection is established using glassy carbon electrode modified with poly(toluidine blue)/gold nanoparticle composite (PTB/AuNP/GCE). The ratiometric signal, namely, the oxidation peak current...


2020 ◽  
Vol 16 (4) ◽  
pp. 424-437
Author(s):  
Kubra Ozturk ◽  
Nurgul K. Bakirhan ◽  
Sibel A. Ozkan ◽  
Bengi Uslu

Background:: new and selective electrochemical sensor was developed for the determination of levocetirizine dihydrochloride, which is an antihistaminic drug. Method:: The investigation was performed by using cyclic, differential pulse and square wave voltammetric methods on the β-cyclodextrin modified glassy carbon electrode. It is thereby planned to obtain information about levocetirizine determination and its mechanism. Result:: The efficiency of experimental parameters including pH, scan rate, and accumulation potential and time on the anodic response of levocetirizine dihydrochloride was studied. By employing the developed method and under optimized conditions, the current showed linear dependence with a concentration in the range between 2 × 10-8 M and 6 × 10-6 M in pH 2.0 Britton Robinson (BR) buffer. Conclusion:: The achieved limits of detection and quantification were found as 3.73 × 10-10 M and 1.24 × 10-9 M, respectively. In addition, the possibility of applying the developed sensor for real sample analysis was investigated, so β-cyclodextrin modified glassy carbon electrode was used to determine levocetirizine dihydrochloride in Xyzal® tablet dosage form. Finally, this sensor was successfully applied to the real sample as a selective, simple, reproducible, repeatable electrochemical sensor.


2020 ◽  
Vol 16 (4) ◽  
pp. 393-403 ◽  
Author(s):  
Renjini Sadhana ◽  
Pinky Abraham ◽  
Anithakumary Vidyadharan

Introduction: In this study, solar exfoliated graphite oxide modified glassy carbon electrode was used for the anodic oxidation of epinephrine in a phosphate buffer medium at pH7. The modified electrode showed fast response and sensitivity towards Epinephrine Molecule (EP). The electrode was characterized electrochemically through Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV). Area of the electrode enhanced three times during modification and studies reveal that the oxidation process of EP occurs by an adsorption controlled process involving two electrons. The results showed a detection limit of 0.50 ± 0.01μM with a linear range up to 100 μM. The rate constant calculated for the electron transfer reaction is 1.35 s-1. The electrode was effective for simultaneous detection of EP in the presence of Ascorbic Acid (AA) and Uric Acid (UA) with well-resolved signals. The sensitivity, selectivity and stability of the sensor were also confirmed. Methods: Glassy carbon electrode modified by reduced graphene oxide was used for the detection and quantification of epinephrine using cyclic voltammetry and differential pulse voltammetry. Results: The results showed an enhancement in the electrocatalytic oxidation of epinephrine due to the increase in the effective surface area of the modified electrode. The anodic transfer coefficient, detection limit and electron transfer rate constant of the reaction were also calculated. Conclusion: The paper reports the determination of epinephrine using reduced graphene oxide modified glassy carbon electrode through CV and DPV. The sensor exhibited excellent reproducibility and repeatability for the detection of epinephrine and also its simultaneous detection of ascorbic acid and uric acid, which coexist in the biological system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pattan-Siddappa Ganesh ◽  
Ganesh Shimoga ◽  
Seok-Han Lee ◽  
Sang-Youn Kim ◽  
Eno E. Ebenso

Abstract Background A simple and simultaneous electrochemical sensing platform was fabricated by electropolymerization of allura red on glassy carbon electrode (GCE) for the interference-free detection of dihydroxy benzene isomers. Methods The modified working electrode was characterized by electrochemical and field emission scanning electron microscopy methods. The modified electrode showed excellent electrocatalytic activity for the electrooxidation of catechol (CC) and hydroquinone (HQ) at physiological pH of 7.4 by cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques. Results The effective split in the overlapped oxidation signal of CC and HQ was achieved in a binary mixture with peak to peak separation of 0.102 V and 0.103 V by CV and DPV techniques. The electrode kinetics was found to be adsorption-controlled. The oxidation potential directly depends on the pH of the buffer solution, and it witnessed the transfer of equal number of protons and electrons in the redox phenomenon. Conclusions The limit of detection (LOD) for CC and HQ was calculated to be 0.126 μM and 0.132 μM in the linear range of 0 to 80.0 μM and 0 to 110.0 μM, respectively, by ultra-sensitive DPV technique. The practical applicability of the proposed sensor was evaluated for tap water sample analysis, and good recovery rates were observed. Graphical abstract Electrocatalytic interaction of ALR/GCE with dihydroxy benzene isomers.


1997 ◽  
Vol 9 (12) ◽  
pp. 952-955 ◽  
Author(s):  
Agustina Guiberteau Cabanillas ◽  
Teresa Galeano Díaz ◽  
Francisco Salinas ◽  
Juan Manuel Ortiz ◽  
Jean Michel Kauffmann

Sign in / Sign up

Export Citation Format

Share Document