co3o4 nanoparticles
Recently Published Documents





2022 ◽  
Swen Zerebecki ◽  
Kai Schott ◽  
Soma Salamon ◽  
Joachim Landers ◽  
Eko Budiyanto ◽  

Controlling the surface composition of colloidal nanoparticles is still a challenging yet mandatory prerequisite in catalytic studies to investigate composition-activity trends, active sites, and reaction mechanisms without superposition of particle size- or morphology-effects. Laser post-processing of colloidal nanoparticles has been employed previously to create defects in oxide nanoparticles, while the possibility of laser-based cation doping of colloidal nanoparticles without affecting their size, remains mostly unaccounted for. Consequently, at the example of doping iron into colloidal Co3O4 spinel nanoparticles, we developed a pulse-by-pulse laser cation doping method to provide catalyst series with gradual surface composition but maintained extrinsic properties such as phase, size, and surface area for catalytic studies. Laser pulse number-resolved doping series were prepared at laser intensity chosen to selectively heat the Co3O4-NPs to roughly 1000 K and enable cation diffusion of surface-adsorbed Fe3+ into the Co3O4 lattice while maintaining the spinel phase, particle size, and surface area. The combination of bulk-sensitive X-ray fluorescence (XRF) and surface-sensitive X-ray photoelectron spectroscopy (XPS) was used to confirm a surface enrichment of the Fe-dopant. XRD, Magnetometry, and Mössbauer spectroscopy revealed an increasing interaction between Fe and the antiferromagnetic Co3O4 with an increasing number of pulses, in line with a proposed laser-induced surface doping of colloidal Co3O4 with Fe. Using Fick’s second law the thermal diffusion-related doping depth was estimated to be roughly 2 nm after 4 laser pulses. At the example of gas-phase 2-propanol oxidation and liquid-phase oxygen evolution reaction, the activity of the laser-doped catalysts is in good agreement with previous observations on binary iron-cobalt oxides. The catalytic activity was found to linearly increases with the calculated doping depth in both reactions, while only catalysts processed with at least one laser pulse were catalytically stable, highlighting the presented method in providing comparable, active, and stable gradual catalyst doping series for future catalytic studies.

Julian Ascolani-Yael ◽  
Alejandra Montenegro-Hernandez ◽  
Laura C. Baqué ◽  
Lucía M. Toscani ◽  
Alberto Caneiro ◽  

Abstract This work presents a comparative study of the diffusion (Dchem) and surface exchange coefficients (kchem) of porous La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Co3O4 nanoparticles decorated LSCF electrodes. The study was carried out using the 3DT-EIS method, which combines Electrochemical Impedance Spectroscopy experiments with FIB-SEM tomography data through an adapted Transmission Line - Adler Lane Steele electrochemical model. A reduction of the polarization resistance of about 60% was measured for the Co3O4 decorated LSCF respect to the reference LSCF cathode, in air at 700 °C. The Co3O4 decoration was found to modify the ORR surface reaction limiting mechanism from O2 dissociation to O-ion incorporation, whereas the diffusion coefficient was not modified by the decoration, which represents a surface diffusion process for both electrodes. After the EIS measurements, the Co3O4 particles were almost no longer visible by Field-Emission SEM on the surface of the decorated sample, but signs that these particles play an active role in Sr Segregation were observed by STEM-EDS, in particular by concentrating the segregated SrO in the surroundings of the decorated particles.

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 76
Ruiyu Wang ◽  
Mengfan Zhang ◽  
Hao Xu ◽  
Shuo Guo ◽  
Mengqi Chi ◽  

In this study, a novel assisted liquid−phase plasma electrolysis was developed to realize one−step synthesis of popcorn biomass−derived porous carbon/cobalt tetroxide (popcorn−carbon/Co3O4) composites, effectively improving the structural stability and conductivity of Co3O4. The phase structure, morphologies, chemical composition, and weight ratio of the as−prepared popcorn−carbon/Co3O4 composites were systematically analyzed. The results of X−ray diffraction (XRD), Raman spectrometer, Fourier infrared spectrometer (FTIR), X−ray photoelectron spectrometer (XPS), and thermogravimetry analyzer (TG) proved the synthesis of the popcorn−carbon/Co3O4 composites. Co3O4 nanoparticles were distributed relatively uniformly on the popcorn−carbon surface. The electrochemical properties of the popcorn−carbon/Co3O4 composite electrode materials were analyzed for exploring the influence of different Co/C ratios on the electrochemical properties of composites. The results showed that the popcorn−carbon/Co3O4 composite electrode materials prepared under 200:1 mass ratio of Co(NO3)2·6H2O and popcorn−carbon possessed a specific capacitance and specific capacity of almost 1264 F/g (594 C/g) at a current density of 1 A/g, exhibiting a better electrochemical property. The efficient, fast, and novel assisted liquid−phase plasma electrolysis provides a new method for the preparation of composite electrode materials on the supercapacitors.

2022 ◽  
Vol 307 ◽  
pp. 131026
Gui-Nian Li ◽  
Xing-Yan An ◽  
Le-Xi Zhang ◽  
Yue Xing ◽  
Li-Jian Bie

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3356
Mizue Mizoshiri ◽  
Kyohei Yoshidomi ◽  
Namsrai Darkhanbaatar ◽  
Evgenia M. Khairullina ◽  
Ilya I. Tumkin

Direct writing of cobalt/cobalt oxide composites has attracted attention for its potential use in catalysts and detectors in microsensors. In this study, cobalt-based composite patterns were selectively formed on glass, polyethylene naphthalate (PEN), and polyethylene terephthalate (PET) substrates via the femtosecond laser reductive sintering of Co3O4 nanoparticles in an ambient atmosphere. A Co3O4 nanoparticle ink, including the nanoparticles, ethylene glycol as a reductant, and polyvinylpyrrolidone as a dispersant, was spin-coated onto the substrates. Near-infrared femtosecond laser pulses were then focused and scanned across the ink films to form the patterns. The non-sintered nanoparticles were subsequently removed from the substrate. The resulting sintered patterns were found to be made up of Co/CoO composites on the glass substrates, utilizing various pulse energies and scanning speeds, and the Co/CoO/Co3O4 composites were fabricated on both the PEN and PET substrates. These results suggest that the polymer substrates with low thermal resistance react with the ink during the reductive sintering process and oxidize the patterns more easily compared with the patterns on the glass substrates. Such a direct writing technique of cobalt/cobalt oxide composites is useful for the spatially selective printing of catalysts and detectors in functional microsensors.

Mayakannan M ◽  
Gopinath S. ◽  
Vetrivel S ◽  
Maharani N. Y

2021 ◽  
pp. 1-13
Alberto Olivo ◽  
Berceste Beyribey ◽  
Hwan Kim ◽  
Joshua Persky

A Co3O4 enhanced La0.8Sr0.2Co0.5Fe0.5O3 - δ (LSCF) electrode is developed for use in air electrodes with proton conducting solid oxide fuel cell (SOFC). The incipient wetness impregnation method enables Co3O4 nanoparticles on the LSCF surface without altering the bulk porosity of the LSCF electrode. The polarization resistance of LSCF electrodes is significantly reduced by Co3O4 doping, and both charge transfer and diffusion/conversion resistances were positively affected. The highest reduction in charge transfer resistance is obtained at 700 °C, which is increased from 21%to 32%through reduction of po 2. Conversely, the highest reduction in diffusion/conversion resistance is achieved at 550 °C. By increasing po 2, the reduction is increased from 57%to 66%and its activation energy is reduced up to 33 %compared to pure LSCF. The lowest total area specific resistances obtained under air are 1.45 Ω·cm2, 2.95 Ω·cm2, 6.75 Ω·cm2 and 16.45 Ω·cm2 at 700 °C, 650 °C, 600 °C and 550 °C, respectively.

Sign in / Sign up

Export Citation Format

Share Document