scholarly journals Repository System Simulation Test of High Level Waste Glass. Results of EC Round Robin Test.

Author(s):  
Toshiaki OHE ◽  
Masaki TSUKAMOT
1989 ◽  
Vol 176 ◽  
Author(s):  
L. A. Mertens ◽  
W. Lutze ◽  
J. A. C. Marples ◽  
P. van Iseghem ◽  
E. Vernaz

Laboratories from 11 countries participated in a ‘Round Robin’ comparative test excercise using the European Commission's Repository Systems Simulation Test [1,5]. The compulsory core part of this exercise involved testing an inactive simulant of the French high-level waste glass (SON68) in containers in which the conditions were similar to those that might occur after disposal of vitrified waste in a future repository. There were three options for the test, representing repositories in clay, granite and salt. Fifteen laboratories, mostly from within the European Community, but including laboratories from USA, Canada and Japan took part in the Round Robin. Most of the laboratories only covered one option: clay, 3, granite, 10, and salt 6. The test procedure was closely specified by the European Communities. This contribution and a companion paper [2] summarize the acquired information.The HLW borosilicate glass SON68 (R7T7), to be returned to and eventually disposed of in various geological repositories by Cogema's reprocessing customers, was tested in a stainless steel autoclave developed and provided by CEA, Marcoule. The glass was prepared and delivered by CEA; together with crushed granite, sand, smectite and groundwater for the granite option. SCK-Mol provided the clay, smectite, sand and the recipe for claywater, HMI-Berlin the recipe for the rock salt composition. The analytical method was the only variable to be chosen by the participants. After termination of the experiments (duration 14-364d, temperature 90°C), the concentrations of the glass constituents Si, B, Mo, Li, in solution had to be determined. The data base was used to evaluate the test procedure and to identify analytical problems.


1989 ◽  
Vol 176 ◽  
Author(s):  
J.A.C. Marples ◽  
W. Lutze ◽  
M. Kawanishi ◽  
P. van Iseghem

ABSTRACTA ‘Round Robin’ test of the European Commission 's “Repository Systems Simulation Test” has been undertaken. This involved testing an inactive simulant of the French high-level waste glass SON68 (RTT7) in containers which also held backfill, geological materials and water. Ten laboratories undertook the granite option, six salt and three clay. The test procedure was closely specified and is given in detail in a companion paper [1]. Experiments with glass powder and (optionally) solid specimens in contact with aqueous solutions were run for periods of up to one year at 90 °C and the solutions were analysed for Si, B, Li and Mo (compulsory) and other constituents of the corroded glass (optional). The analytical results are used to compare the performance of the glass under conditions representing those that might occur in future repositories in the three media.


2002 ◽  
Vol 757 ◽  
Author(s):  
V. Pirlet ◽  
P. Van Iseghem

ABSTRACTOrganic complexes of actinides are known to occur upon interaction of high level waste glass and Boom Clay which is a potential host rock formation for disposal of high level waste in Belgium. The solubility and mobility of 237Np, one of the most critical radionuclides, can be affected by the high dissolved organic carbon content of the Boom Clay porewater through complexation with the humic substances. The influence of humic substances on the Np behaviour is considered through dissolution tests of Np-doped glasses in Boom Clay water and through fundamental study of the specific interaction between Np(IV) and the humic acids using spectroscopic techniques. High Np(IV) concentrations are found in the glass dissolution tests. These concentrations are higher than what we should expect from the solubility of Np(OH)4, the solubility limiting solid phase predicted under the reducing conditions and pH prevailing in Boom Clay. Studying the specific interaction of Np(IV) with humic acids in Boom Clay porewater, high soluble Np concentrations are also measured and two main tetravalent Np-humate species are observed by UV-Vis spectroscopy. The two species are interpreted in terms of mixed hydroxo-humate complexes, Np(OH)xHA with x = 3 or 4. These species are the most likely species that can form according to the pH working conditions. Using thermodynamic simplified approaches, high complexation constants, i.e. log β131 and log β141 respectively equal to 46 and 51.6, are calculated for these species under the Boom Clay conditions.Comparing the spectroscopic results of the dissolution tests with the study of the interaction of Np(IV) with humic substances, we can conclude that the complexation of Np(IV) with the humic acids may occur and increases the solubility of Np(OH)4 upon interaction of a Np-doped glass and the Boom Clay porewater.


2003 ◽  
Vol 807 ◽  
Author(s):  
Neil C. Hyatt ◽  
William E. Lee ◽  
Russell J. Hand ◽  
Paul K. Abraitis ◽  
Charlie R. Scales

ABSTRACTVapour phase hydration studies of a blended Oxide / Magnox simulant high level waste glass were undertaken at 200°C, over a period of 5 – 25 days. The alteration of this simulant waste glass is characterised by a short incubation time of less than 5 days, leading to the formation of an alteration layer several microns thick. Following the incubation period, the alteration proceeds at a constant rate of 0.15(1)μmd−1. The distribution of key glass matrix (Si, Na) and waste (Cs, Zr, Nd, Mo) elements was found to vary significantly across the alteration layer. Vapour phase hydration leads to formation of surface alteration products, identified as smectite, zirconium silicate and alkaline-earth molybdate phases.


2015 ◽  
Vol 79 (6) ◽  
pp. 1529-1542 ◽  
Author(s):  
N. Cassingham ◽  
C.L. Corkhill ◽  
D.J. Backhouse ◽  
R.J. Hand ◽  
J.V. Ryan ◽  
...  

AbstractThe first comprehensive assessment of the dissolution kinetics of simulant Magnox–ThORP blended UK high-level waste glass, obtained by performing a range of single-pass flow-through experiments, is reported here. Inherent forward rates of glass dissolution were determined over a temperature range of 23 to 70°C and an alkaline pH range of 8.0 to 12.0. Linear regression techniques were applied to the TST kinetic rate law to obtain fundamental parameters necessary to model the dissolution kinetics of UK high-level waste glass (the activation energy (Ea), pH power law coefficient (η) and the intrinsic rate constant (k0)), which is of importance to the post-closure safety case for the geological disposal of vitreous products. The activation energies based on B release ranged from 55 ± 3 to 83 ± 9 kJ mol–1, indicating that Magnox–THORP blend glass dissolution has a surface-controlled mechanism, similar to that of other high-level waste simulant glass compositions such as the French SON68 and LAW in the US. Forward dissolution rates, based on Si, B and Na release, suggested that the dissolution mechanism under dilute conditions, and pH and temperature ranges of this study, was not sensitive to composition as defined by HLW-incorporation rate.


1991 ◽  
Vol 257 ◽  
Author(s):  
G.G. Wicks ◽  
A.R. Lodding ◽  
P.B. Macedo ◽  
D.E. Clark

ABSTRACTThe first field tests conducted in the United States involving burial of simulated high-level waste [HLW] forms and package components, were started in July of 1986. The program, called the Materials Interface Interactions Test or MIIT, is the largest cooperative field-testing venture in the international waste management community. Included in the study are over 900 waste form samples comprising 15 different systems supplied by 7 countries. Also included are approximately 300 potential canister or overpack metal samples along with more than 500 geologic and backfill specimens. There are almost 2000 relevant interactions that characterize this effort which is being conducted in the bedded salt site at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The MIIT program represents a joint endeavor managed by Sandia National Laboratories in Albuquerque, N.M., and Savannah River Laboratory in Aiken, S.C. and sponsored by the U.S. Department of Energy. Also involved in MIIT are participants from various laboratories and universities in France, Germany, Belgium, Canada, Japan, Sweden, the United Kingdom, and the United States. In July of 1991, the experimental portion of the 5-yr. MIIT program was completed. Although only about 5% of all MIIT samples have been assessed thus far, there are already interesting findings that have emerged. The present paper will discuss results obtained for SRS 165/TDS waste glass after burial of 6 mo., 1 yr. and 2 yrs., along with initial analyses of 5 yr. samples.


Sign in / Sign up

Export Citation Format

Share Document