Developing crop production functions of wheat using experimentally determined yield response factors

2007 ◽  
Vol 32 (2) ◽  
Author(s):  
M.S. Islam ◽  
M.A Hossain ◽  
M. Abdullah ◽  
ME Hossain
2013 ◽  
Vol 56 (2) ◽  
pp. 373-393 ◽  
Author(s):  
Koffi Djaman ◽  
Suat Irmak ◽  
William R. Rathje ◽  
Derrel L. Martin ◽  
Dean E. Eisenhauer

2005 ◽  
Vol 85 (1) ◽  
pp. 81-93 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner ◽  
F. Selles ◽  
P. G. Jefferson ◽  
B. G. McConkey ◽  
...  

Assessment of the long-term impact of fertilizers and other management factors on crop production and environmental sustainability of cropping systems in the semi-arid Canadian prairies is needed. This paper discusses the long-term influence of N and P fertilizers on crop production, N uptake and water use of hard red spring wheat (Triticum aestivum L.), and the effect of the preceding crop type [flax (Linum usitatissimum L.) and fall rye (Secale cereale L.)] on wheat grown on a medium-textured, Orthic Brown Chernozem at Swift Current, Saskatchewan. We analysed 36 yr of results (1967–2002) from eight crop rotation-fertility treatments: viz., fallow-wheat receiving N and P (F-W, N + P), three F-W-W treatments fertilized with (i) N + P, (ii) P only, and (iii) N only; two other 3-yr mixed rotations with N + P (i) F-flax-W (F-Flx-W) and (ii) F-fall rye-W (F-Rye-W); and two continuous wheat rotations (Cont W), one receiving N + P and the other only P. Growing season weather conditions during the 36-yr period were near the long-term mean, but the first 22 yr were generally drier than normal while the last 14 yr (1989–2002) had average to above-average growing conditions. This was partly responsible for grain and N yield being greater in the latter period than in the first 22 yr. The 36-yr average response of wheat grown on fallow to P fertilizer was 339 kg ha-1, while the response to N fertilizer over this period was only 123 kg ha-1. The 36-yr average response of wheat grown on stubble to N was 344 kg ha-1 for F-W-(W) and 393 kg ha-1 for Cont W. Neither flax nor fall rye influenced the yield response of the following wheat crops. Annualized grain production for F-W (N + P), F-W-W (+ N) and F-W-W (+ P) rotations were similar (1130 kg ha-1 yr-1); this was about 15% lower than for F-W-W (N + P), 40% lower than for Cont W (N + P), and 5% lower than for Cont W (+ P). Annualized aboveground N yield for Cont W (N + P) was 57% higher than for Cont W (+ P). Regressions were developed relating straw to grain yields for wheat, flax and fall rye. The amount of NO3-N left in the soil was directly related to amount of N applied and inversely to N removed in the crop. Thus, F-(W)-W (+ N) left about 28% more NO3-N in the rooting zone than F-(W)-W (N + P), while F-W-(W) (N + P) left 20% more than F-W-(W) (+ P), and Cont W (N + P) left 39% more than Cont W (+ P). F-Rye-W (N + P) left much less NO3-N in the soil than any other fallow-containing system and similar amounts to Cont W (N + P). Key words: Yields, grain protein, N and P fertilizer, straw/grain regressions, water use, soil nitrate


2006 ◽  
Vol 14 (3) ◽  
pp. 63-72
Author(s):  
Maan Hazim Sheet ◽  
Eman Hazim Sheet

2020 ◽  
Vol 12 (1) ◽  
pp. 358
Author(s):  
Suat Irmak ◽  
Ali T. Mohammed ◽  
William Kranz ◽  
C.D. Yonts ◽  
Simon van Donk

Irrigation-yield production functions (IYPFs), irrigation water use efficiency (IWUE), and grain production per unit of applied irrigation of non-drought-tolerant (NDT) and drought-tolerant (DT) maize (Zea mays L.) hybrids were quantified in four locations with different climates in Nebraska [Concord (sub-humid), Clay Center (transition zone between sub-humid and semi-arid); North Platte (semi-arid); and, Scottsbluff (semi-arid)] during three growing seasons (2010, 2011, and 2012) at three irrigation levels (fully-irrigated treatment (FIT), early cut-off (ECOT), and rainfed (RFT)) under two plant population densities (PPDs) (low-PPD; 59,300 plants ha−1; and, high-PPD, 84,000 plants ha−1). Overall, DT hybrids’ performance was superior to NDT hybrid at RFT, ECT, and FIT conditions, as confirmed by the yield response, IYPF and IWUE when all locations, years, and PPDs were averaged. The yield response to water was greater with the high-PPD than the low-PPD in most cases. The magnitude of the highest yields for DT hybrids ranged from 7.3 (low-PPD) to 8.5% (high-PPD) under RFT, 3.7 (low-PPD) to 9.6% (high-PPD) under ECOT, and 3.9% (high-PPD) under FIT higher than NDT hybrid. Relatively, DT hybrids can resist drought-stress conditions longer than NDT hybrid with fewer penalties in yield reduction and maintain comparable or even higher yield production at non-stress-water conditions.


1997 ◽  
Vol 18 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Susanne M. Scheierling ◽  
G. E. Cardon ◽  
Robert A. Young

Sign in / Sign up

Export Citation Format

Share Document