scholarly journals Influence of brick manufacturing on phosphorus and sulfur in different agro-ecological soils of Bangladesh

2017 ◽  
Vol 29 (2) ◽  
pp. 123-131
Author(s):  
Reshma Akter ◽  
Md Jamal Uddin ◽  
Md Faruque Hossain ◽  
Zakia Parveen

A study was carried out to evaluate the effects of brick manufacturing on phosphorus (P) and sulfur (S) concentrations in soil and plant collected from different distances of brick kilns in four AEZs of Bangladesh. Forty eight composite soil samples (0 - 15 cm depth) were collected from 48 points in 12 different sites at 0 m, 300 m, 800 m and 1500 m from brick kilns, where most (site 2, site 3, site 5, site 6, site 7, site 9 and site 10) of the brick kilns used coal for brick burning purposes. Plant samples (rice straw and different vegetables) were also collected from the respective fields except 0 m distances. Significantly (p ? 0.05) lower organic matter, cation exchange capacity, clay content and soil pH were found at 0 m distances compared to other distances. Highest concentration of total P in soil were recorded at 0 m distances and these concentrations decreased with increasing distances from the brick kilns in most of the sites; whereas available P is significantly lower at 0 m distances than that of other distances. Total and available concentration of S in soil followed the trend 0 m>300 m>800 m>1500 m. Maximum accumulation of P (69.15 mg kg-1) and S (0.14%) in plant was found at 800 m away from the brick kiln.Bangladesh J. Sci. Res. 29(2): 123-131, December-2016

2016 ◽  
Vol 8 (2) ◽  
pp. 229-235
Author(s):  
A. F. M. Sanaullah ◽  
M. Akhtaruzzaman ◽  
M. A. Uddin

Soil samples were collected from M. R. Khan tea-estate area of Moulvibazar district, Bangladesh. Organic matter, active acidity, reserve acidity, cation exchange capacity, clay content and textural class of the collected soil samples for different topographic positions and depths were determined. The percentage of sand, silt and clay varied from 59.75 to 70.50, 12.50 to 20.00 and 14.50 to 22.75, respectively. Active acidity and reserve acidity of the soils varied from 4.13 to 5.82 and 3.46 to 4.84, respectively.  Organic matter content varied from 0.37% to 1.93%. Cation exchange capacity (CEC) varied from 11.42 to 24.86 cmolKg-1. Soils were acidic in nature with considerably high reserve acidity. The measured parameters of the soil samples were plotted and analyzed with reference to topography and depth. The parameters have been found to vary with sampling sites, depths and topography.


1994 ◽  
Vol 74 (4) ◽  
pp. 421-429 ◽  
Author(s):  
Wietse L. Meyer ◽  
Paul A. Arp

Concentrations of Ca, Mg, K, Na, Al, Fe, Mn, and Si extractable with 1 N ammonium chloride (NH4Cl, pH 4.5) and 1 N ammonium acetate (NH4OAc, pH 4.5) were determined for forest soil samples as follows: (1) before drying, and (2) at several time intervals after air-drying (1, 5, 11 and 14 wk). Values for CEC were obtained for the same samples by determining (1) the sum of cations (Al3+, Ca2+, Mg2+, K+, Na+, Fe3+, and Mn2+) in the extracts [denoted [Formula: see text] and [Formula: see text]], and (2) the amount of ammonium retained by the soil samples against water washing [denoted CEC(NH4OAc) and CEC (NH4Cl)]. The soils used in this investigation were taken from four New Brunswick upland forest sites (two sugar maple sites, one mixed wood site, and one spruce site). It was round that (1) extractable Mg, K, Na, and Mn levels were generally not affected by drying, storing, and type of extradant; (2) extractable Al and Fe levels increased immediately after drying; (3) NH4OAc-extracted Al, Fe, and Si exceeded NH4Cl-extracted Al, Fe, and Si; (4) extracted Al and Fe levels tended to drop after 11 wk of storage; (5) small drying effects were also noticed for NH4Cl-extracted Ca; (6) CEC(NH4OAc) and CEC(NH4Cl) values decreased with increasing time of storage; this effect was noticed most for soil samples with high levels of organic matter (Ah, Ahe, Bm, Bf, and Bfh), and was noticed least for sod samples taken from leached horizons (Ae) and subsoil horizons (BC and C); (7) in some cases, storage time increased CEC(NH4OAc) in subsoils; (8) values for [Formula: see text] remained fairly independent or increased slightly with storage time and were closely related with CEC(NH4Cl) values obtained with non-dried samples; (9) values for [Formula: see text] did not relate well with CEC(NH4OAc) and CEC(NH4Cl). Differences for extractable Al were likely due to Al complexation by acetate ions. Drying effects on extractable Al and Fe (and possibly Ca) were likely due to drying-induced fragmentation of soil organic matter. Drying and storage effects on CEC(NH4OAc) and CEC(NH4Cl) were likely due to (1) water-washing and related loss of organic matter, and (2) sensitivity of subsoil minerals to air exposure. Apparent drying and storage effects on CEC were most noted with [Formula: see text] and were least noted with [Formula: see text]. Key words: Cation exchange capacity, ion exchange, drying, storage, ammonium acetate, ammonium chloride extractions


2011 ◽  
Vol 6 (3) ◽  
Author(s):  
J. Zake ◽  
J. Y. Z. Kitungulu ◽  
H. Busurwa ◽  
F. Kyewaze

Wetlands are not wastelands but wealth lands, which are widely distributed throughout Uganda currently covering 11% of the total land area. They are accessible to a large proportion of the population. As the country's population grows, people increasingly convert wetlands for other land uses such as farming, settlement among others thus making it difficult to enforce legislation for their protection, sustainable management and utilization. Their profound importance to both humans and wildlife calls for a concerted effort to ensure their sustainable utilization and attempts should be made to promote sustainable development of such wetlands with adequate considerations being given to human and environmental requirements. This study was therefore carried out to determine the effect of drainage on organic matter levels and on soil chemical changes in wetland soils in eastern Uganda around the Lake Victoria basin. Secondly, to assess potential lime requirements for drained wetland soils in eastern Uganda around the Lake Victoria basin, this would reflect on wetland soil buffering capacity. In green house studies it was found that drainage of wetland soils led to a reduction of organic matter relative to soil structure and where sulfur and iron were present in large amounts, drainage caused decrease in soil pH to moderately acidic levels; but in cases where exchangeable bases were present in large amounts there was an increase in soil pH. Lime requirements were greater where the amount of clay, organic matter and cation exchange capacity were high. Consequently, such wetland soils had a high buffering capacity. It was concluded that wetland soils should be characterized in terms of potential of acidification, level of organic matter, nutrient content, cation exchange capacity, soil texture and levels of trace elements. Decisions to drain or not to drain should depend on these parameters and other socio-economic considerations for the area.


2013 ◽  
Vol 27 (1) ◽  
pp. 57-67 ◽  
Author(s):  
S.E. Obalum ◽  
J. Oppong ◽  
C.A. Igwe ◽  
Y. Watanabe ◽  
M.E. Obi

Abstract The spatial variability of some physicochemical properties of topsoils/subsoils under secondary forest, grassland fallow, and bare-soil fallow of three locations was evaluated. The data were analyzed and described using classical statistical parameters. Based on the coefficient of variation, bulk density, total porosity, 60-cm-tension moisture content, and soil pH were of low variability. Coarse and fine sand were of moderate variability. Highly variable soil properties included silt, clay, macroporosity, saturated hydraulic conductivity, organic matter concentration, and cation exchange capacity. Overall, soil pH and silt varied the least and the most, respectively. Relative weighting showed that location dominantly influenced the soil variability, except for soil porosity and organic matter concentration influenced mostly by land use. Most of the soil data were normally distributed; others were positively skewed and/or kurtotic. The minimum number of samples (at 25 samples ha-1) required to estimate mean values of soil properties was highly soil property-specific, ranging from 1 (topsoil pH-H2O) to 246 (topsoil silt). Cation exchange capacity of subsoils related fairly strongly with cation exchange capacity of topsoils (R2 = 0.63). Spatial variability data can be used to extrapolate dynamic soil properties across a derived-savanna landscape.


Solid Earth ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 827-843 ◽  
Author(s):  
Sunday Adenrele Adeniyi ◽  
Willem Petrus de Clercq ◽  
Adriaan van Niekerk

Abstract. Cocoa agroecosystems are a major land-use type in the tropical rainforest belt of West Africa, reportedly associated with several ecological changes, including soil degradation. This study aims to develop a composite soil degradation assessment index (CSDI) for determining the degradation level of cocoa soils under smallholder agroecosystems of southwestern Nigeria. Plots where natural forests have been converted to cocoa agroecosystems of ages 1–10, 11–40, and 41–80 years, respectively representing young cocoa plantations (YCPs), mature cocoa plantations (MCPs), and senescent cocoa plantations (SCPs), were identified to represent the biological cycle of the cocoa tree. Soil samples were collected at a depth of 0 to 20 cm in each plot and analysed in terms of their physical, chemical, and biological properties. Factor analysis of soil data revealed four major interacting soil degradation processes: decline in soil nutrients, loss of soil organic matter, increase in soil acidity, and the breakdown of soil textural characteristics over time. These processes were represented by eight soil properties (extractable zinc, silt, soil organic matter (SOM), cation exchange capacity (CEC), available phosphorus, total porosity, pH, and clay content). These soil properties were subjected to forward stepwise discriminant analysis (STEPDA), and the result showed that four soil properties (extractable zinc, cation exchange capacity, SOM, and clay content) are the most useful in separating the studied soils into YCP, MCP, and SCP. In this way, we have sufficiently eliminated redundancy in the final selection of soil degradation indicators. Based on these four soil parameters, a CSDI was developed and used to classify selected cocoa soils into three different classes of degradation. The results revealed that 65 % of the selected cocoa farms are moderately degraded, while 18 % have a high degradation status. The numerical value of the CSDI as an objective index of soil degradation under cocoa agroecosystems was statistically validated. The results of this study reveal that soil management should promote activities that help to increase organic matter and reduce Zn deficiency over the cocoa growth cycle. Finally, the newly developed CSDI can provide an early warning of soil degradation processes and help farmers and extension officers to implement rehabilitation practices on degraded cocoa soils.


1987 ◽  
Vol 67 (1) ◽  
pp. 175-185 ◽  
Author(s):  
MARTIN DUQUETTE ◽  
WILLIAM H. HENDERSHOT

The cation and anion exchange capacities (CEC and AEC) as functions of pH were measured for 12 soil samples from various parts of Quebec. In addition to the index cation Ca, Al was measured in the replacing solutions in order to evaluate the contribution of Al to pH-dependent CEC at low pH. Although all of the soils possessed some pH-dependent CEC, the soils with the steepest rise in CEC with pH were those with the largest accumulation of sesquioxides. The effective CEC, measured at the soil pH, ranged from 2.4 to 37.2 cmol(+) kg−1 while the CEC at pH 7 minus the CEC at pH3 varied from 4.4 to 39.9 cmol(+) kg−1. The maximum amount of exchangeable Al was found to correlate very highly with the amount of amorphous inorganic Al in the samples. The inclusion of exchangeable Al in the calculation did not significantly reduce the amount of pH-dependent CEC measured for the soils. Key words: Effective CEC, permanent charge, pH-dependent CEC


2011 ◽  
Vol 3 (3) ◽  
pp. 683-688
Author(s):  
M. N. Islam ◽  
A. F. M. Sanaullah

Bangladesh is one of the tea producing countries of the world. It has 163 tea estates. Rangapani is a low yielding tea estate relative to other neighboring tea estates of Chittagong district in Bangladesh. A total 54 soil samples were collected from six different hills and three topographic positions having different depths of Rnagapanni Tea-Estate. Physico-Chemical properties of soils such as active acidity, reserve acidity, cation exchange capacity and clay content of the collected soil samples were determined. The measured parameters of the soil samples were plotted and analyzed with reference to site and topography. The parameters have been found to vary with sampling sites, depths and topography. Active acidity and reserve acidity were very low, with some exceptions compared to the optimum range for tea cultivation. Sand, silt, clay and cation exchange capacity (CEC) were found in reasonable range Keywords:  Soil; Active acidity; Reserve acidity; Cation exchange capacity; Clay content. © 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: 10.3329/jsr.v3i3.7503               J. Sci. Res. 3 (3), 683-688 (2011)


2018 ◽  
Vol 7 (4) ◽  
pp. 31 ◽  
Author(s):  
Jehangir Bhadha ◽  
Raju Khatiwada ◽  
Salvador Galindo ◽  
Nan Xu ◽  
Jay Capasso

Flooded rice (Oryza sativa L.) in south Florida is grown commercially in rotation with sugarcane and vegetables. From 2008 to 2018, rice production has doubled. During the spring-summer, nearly 200 km2 of fallow sugarcane land is available for rice production. In 2017, approximately 113 km2 of rice were planted in the region. The net value of growing rice as a rotation crop far exceeds its monetary return. This study evaluated soil health parameters before and after rice cultivation and compared them against two other common summer farming practices - fallow fields and flooded-fallow. The soil health parameters that were tested as part of this study included soil pH, bulk density, water holding capacity, cation exchange capacity, organic matter, active carbon and nutrient content. Results indicated an increase in soil pH, and a significant reduction in soil bulk density due to rice cultivation. Water holding capacity increased significantly under all flooded land use practices compared to fallow fields. Cation exchange capacity significantly increased when sugarcane fields were cultivated with rice and ratoon rice, nearly doubled from 58 to 101 cmolc kg-1. Small, yet significant 3% increase in organic matter was observed when sugarcane fields were cultivated with ratoon rice. Almost 16 g kg-1 of active C is being generated within fallow soils, whereas less than half that under flooded practices, limiting the amount of soil loss via oxidation. Based on the soil health index, rice cultivation and flooded-fallow improved overall soil quality compared to fallow lands.


2006 ◽  
Vol 86 (1) ◽  
pp. 133-139 ◽  
Author(s):  
Edouard Lemire ◽  
Kate M Taillon ◽  
William H. Hendershot

Controlling soil pH is important to ensure good crop yield. This study was conducted to determine whether the accuracy of the existing Shoemaker-McLean-Pratt (SMP) pH-buffer method could be improved by using the pH-dependent cation exchange capacity curve (CECpd). Soil pH, SMP and CECpd measurements were performed on 18 acid surface horizon soil samples, with textures from sandy loam to clay loam. These soils were incubated with three levels of calcium carbonate for 12 wk, after which the soil pH and the effective cation exchange capacity (CECe) were measured. The correlation coefficient (R2) for the CECpd and CECe curves was 0.96. The main factor affecting the slope of the curves is the soil organic matter content. The increase of CECe in the soil was also found to be directly proportional to the amount of lime applied, regardless of the type of soil. By using the slope of the Qv versus pH curve for each soil and the relationship between CECe and lime application, we were able to determine the lime required to raise the soil pH in water to 6.5. As an alternative to the current practice of using the SMP buffer, we propose that it should be possible to estimate the pH-dependent CEC curve from measurable soil properties (e.g., organic matter) and to estimate the lime requirement as the difference in CECpd between the existing and desired pH values. Once the slope of the Qv/pH relationship has been determined or estimated for a soil, the only measurement necessary for calculating lime requirement in subsequent years would be the soil pH. The proposed method would provide lime requirement estimates while decreasing the annual cost of soil analysis. Key words: Lime requirement, cation exchange capacity, Non-Ideal Competitive Adsorption, soil properties, organic matter, Fe oxides


1969 ◽  
Vol 57 (4) ◽  
pp. 286-293 ◽  
Author(s):  
L. C. Liu ◽  
H. R. Cibes-Viadé

The adsorption capacity of Fluometuron, Prometryne, Sencor, and 2,4-D by 48 local soils was determined spectrophotometrically. The mean adsorptivities of the four herbicides by these soils were as follows: Prometryne 37.0 percent, Sencor 23.0 percent, Fluometuron 22.6 percent, and 2,4-D 12.4 percent. The results indicated that organic matter content was the factor most highly correlated with adsorption of these herbicides by the 48 soils. Cation exchange capacity was found to correlate significantly with adsorption of Fluometuron, Prometryne, and Sencor. Such was not the case with 2,4-D. Correlation between clay content and adsorption of Fluometuron and Sencor was statistically significant. In contrast, no significant correlation was noted between clay content and adsorption of Prometryne and 2,4-D.


Sign in / Sign up

Export Citation Format

Share Document