scholarly journals Comparison of protein patterns among some Salmonella serovars and E. coli by two-dimensional polyacrylamide gel electrophoresis

1970 ◽  
Vol 6 (2) ◽  
pp. 127-138
Author(s):  
F Begum ◽  
Y Adachi ◽  
MSR Khan

The study was conducted to compare the protein patterns among some Salmonella serovars and E. coli using Two Dimensional Polyacrylamide Gel Electophoresis. The Two Dimensional Polyacrylamide Gel Electophoresis showed a 37.81 kDa well separated protein spots with all Salmonella serovars at the same time with E. coli a 36.5 kDa protein. However, these protein spots of Two Dimensional Polyacrylamide Gel Electophoresis were further tested with Immunoblotting analysis with specific antiserum against Salmonella typhimurium infected chicks. All selected Salmonella serovars successfully identified a common 37.81 kDa protein whereas E. coli spots identified as 36.5 kDa protein instead of 37.81 kDa. As a further monitoring of these proteins as to check the homogeneity and heterogeneity for N-terminal amino acid sequencing, the specific protein bands from all Salmonella serovars and E. coli were excised, purified and subjected to sequence analysis. The amino acid sequence alignment showed the 37.81 kDa proteins of some Salmonella serovars were identical or homologous among the Salmonella serovars. The N-terminal amino acid alignments of the 37.81 kDa proteins were determined as alanineglutamine- valine-isoleucine-asparagine-threonine-asparagine. On the other hand, the N-terminal amino acid alignment of the 36.5 kDa protein of E. coli ACLD2201 was found to be heterologous as alanine-proline-lysine-aspartic acid-aspararginethreonine- tryptophan. The findings of this study can be concluded that the 37.81 kDa protein of some Salmonella serovars and 36.5 kDa protein of E. coli were completely different though there is some identity of these organisms due to the presence of Enterobacterial common antigen. Key words: Salmonella, 2D-PAGE, amino acid sequence doi: 10.3329/bjvm.v6i2.2324 Bangl. J. Vet. Med. (2008). 6 (2): 127-138

1979 ◽  
Author(s):  
C.S. Cierniewski

Polypeptide chains Aα, Bβ and γ of porcine fibrinogen were isolated by preparative SDS polyacrylamide gel electrophoresis. Their purity was estimated by electrophoresis in polyacrylamide gel, amino acid composition and N-terminal amino acid analyses. Antisera to the pig polypeptide chains were produced in rabbits and they were employed in immunological comparative studies of porcine, bovine, human and duck fibrinogens. Antisera to the pig Aα chain showed in gel immunodiffusion and passive hemagglutination a strong cross-reaction with porcine, bovine and human fibrinogens. Antisera to the pig βB and γ chains cross-reacted only with porcine and bovine fibrinogens but they did not recognize human fibrinogen, The reaction of antiγ antisera was detectable only by passive hemagglutination test. In all cases antigenic similarity of the analyzed fibrinogens was mainly related to antigenic determinants of the Aα, Bβ and γ chains exposed on the intact fibrinogen molecule. None of analyzed antisera reacted with duck fibrinogen.


2005 ◽  
Vol 68 (1) ◽  
pp. 157-163 ◽  
Author(s):  
MI-HEE KIM ◽  
YOON-JUNG KONG ◽  
HONG BAEK ◽  
HYUNG-HWAN HYUN

Strain GO5, a bacteriocin-producing bacterium, was isolated from green onion kimchi and identified as Micrococcus sp. The bacteriocin, micrococcin GO5, displayed a broad spectrum of inhibitory activity against a variety of pathogenic and nonpathogenic microorganisms, as tested by the spot-on-lawn method; its activity spectrum was almost identical to that of nisin. Micrococcin GO5 was inactivated by trypsin (whereas nisin was not) and was completely stable at 100°C for 30 min and in the pH range of 2.0 to 7.0. Micrococcin GO5 exhibited a typical mode of bactericidal activity against Micrococcus flavus ATCC 10240. It was purified to homogeneity through ammonium sulfate precipitation, ultrafiltration, and CM-Sepharose column chromatography. The molecular mass of micrococcin GO5 was estimated to be about 5.0 kDa by tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis and in situ activity assay with the indicator organism. The amino acid sequence of micrococcin GO5 lacks lanthionine and β-methyllanthionine and is rich in hydrophobic amino acids and glycine, providing the basis for the high heat stability of this bacteriocin. The N-terminal amino acid sequence of micrococcin GO5 is Lys-Lys-Ser-Phe-Cys-Gln-Lys, and no homology to bacteriocins reported previously was observed in the amino acid composition or N-terminal amino acid sequence. Based on the physicochemical properties, small molecular size, and inhibition of Listeria monocytogenes, micrococcin GO5 has been placed with the class II bacteriocins, but its broad spectrum of activity differs from that of other bacteriocins in this class.


2002 ◽  
Vol 184 (1) ◽  
pp. 207-215 ◽  
Author(s):  
Stefan R. Kaschabek ◽  
Bernd Kuhn ◽  
Dagmar Müller ◽  
Eberhard Schmidt ◽  
Walter Reineke

ABSTRACT The degradation of 3-oxoadipate in Pseudomonas sp. strain B13 was investigated and was shown to proceed through 3-oxoadipyl-coenzyme A (CoA) to give acetyl-CoA and succinyl-CoA. 3-Oxoadipate:succinyl-CoA transferase of strain B13 was purified by heat treatment and chromatography on phenyl-Sepharose, Mono-Q, and Superose 6 gels. Estimation of the native molecular mass gave a value of 115,000 ± 5,000 Da with a Superose 12 column. Polyacrylamide gel electrophoresis under denaturing conditions resulted in two distinct bands of equal intensities. The subunit A and B values were 32,900 and 27,000 Da. Therefore it can be assumed that the enzyme is a heterotetramer of the type A2B2 with a molecular mass of 120,000 Da. The N-terminal amino acid sequences of both subunits are as follows: subunit A, AELLTLREAVERFVNDGTVALEGFTHLIPT; subunit B, SAYSTNEMMTVAAARRLKNGAVVFV. The pH optimum was 8.4. K m values were 0.4 and 0.2 mM for 3-oxoadipate and succinyl-CoA, respectively. Reversibility of the reaction with succinate was shown. The transferase of strain B13 failed to convert 2-chloro- and 2-methyl-3-oxoadipate. Some activity was observed with 4-methyl-3-oxoadipate. Even 2-oxoadipate and 3-oxoglutarate were shown to function as poor substrates of the transferase. 3-Oxoadipyl-CoA thiolase was purified by chromatography on DEAE-Sepharose, blue 3GA, and reactive brown-agarose. Estimation of the native molecular mass gave 162,000 ± 5,000 Da with a Superose 6 column. The molecular mass of the subunit of the denatured protein, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 42 kDa. On the basis of these results, 3-oxoadipyl-CoA thiolase should be a tetramer of the type A4. The N-terminal amino acid sequence of 3-oxoadipyl-CoA thiolase was determined to be SREVYI-DAVRTPIGRFG. The pH optimum was 7.8. K m values were 0.15 and 0.01 mM for 3-oxoadipyl-CoA and CoA, respectively. Sequence analysis of the thiolase terminus revealed high percentages of identity (70 to 85%) with thiolases of different functions. The N termini of the transferase subunits showed about 30 to 35% identical amino acids with the glutaconate-CoA transferase of an anaerobic bacterium but only an identity of 25% with the respective transferases of aromatic compound-degrading organisms was found.


1973 ◽  
Vol 74 (2) ◽  
pp. 226-236 ◽  
Author(s):  
Michel Chrétien ◽  
Claude Gilardeau

ABSTRACT A protein isolated from ovine pituitary glands has been purified, and its homogeneity assessed by NH2- and COOH-terminal amino acid determination, ultracentrifugation studies, and polyacrylamide gel electrophoresis after carboxymethylation. Its chemical and immunochemical properties are closely similar to those of beef and pork neurophysins, less similar to those of human neurophysins. It contains no tryptophan (like other neurophysins) or histidine (like all except bovine neurophysin-I and human neurophysins). It has alanine at the NH2-terminus and valine at the COOH-terminus. Its amino acid composition is similar to, but not identical with those of porcine and bovine neurophysins.


1980 ◽  
Vol 45 (4) ◽  
pp. 1144-1154 ◽  
Author(s):  
Miroslav Baudyš ◽  
Helena Keilová ◽  
Vladimír Kostka

To determine the primary structure of the C-terminal part of the molecule of chicken pepsinogen the tryptic, chymotryptic and thermolytic digest of the protein were investigated and peptides derived from this region were sought. These peptides permitted the following 21-residue C-terminal sequence to be determined: ...Ile-Arg-Glu-Tyr-Tyr-Val-Ile-Phe-Asp-Arg-Ala-Asn-Asn-Lys-Val-Gly-Leu-Ser-Pro-Leu-Ser.COOH. A comparison of this structure with the C-terminal sequential regions of the other acid proteases shows a high degree of homology between chicken pepsinogen and these proteases (e.g., the degree of homology with respect to hog pepsinogen and calf prochymosin is about 66%). Additional tryptic peptides, derived from the N-terminal part of the zymogen molecule whose amino acid sequence has been reported before, were also obtained in this study. This sequence was extended by two residues using an overlapping peptide. An ancillary result of this study was the isolation of tryptic peptides derived from other regions of the zymogen molecule.


Sign in / Sign up

Export Citation Format

Share Document