scholarly journals Drinking Water Quality at Academic Institutions of Tangail Municipality

2015 ◽  
Vol 6 (1) ◽  
pp. 247-252
Author(s):  
M Sultana ◽  
ASM Saifullah ◽  
MB Latif ◽  
SA Mamun ◽  
DS Sultana

An experiment was conducted to explore the drinking water quality at some selected academic institutions of Tangail municipality during the period of August to September, 2012. For this, an investigation was carried out to study the standard water quality parameters such as pH, EC, TDS, Pb, As, Fe and E. coli concentration of the five academic institutions. In general, there were no major differences found in pH, EC and TDS values among the studied stations and not exceeded the recommended thresholds. In case of heavy metal content, very trace amount of Arsenic (0.0071ppm) was recorded from all selected institutions. In contrast, average lead concentration (0.307xppm) was much higher than all acceptable standard limits and most risky position was taken by station-3 (0.46ppm). Similar to Pb, average Fe concentration (0.255ppm) was five times higher than the acceptable value of EU standard but not exceeded BD standard value. All the samples were E.Coli bacteria free.DOI: http://dx.doi.org/10.3329/jesnr.v6i1.22074 J. Environ. Sci. & Natural Resources, 6(1): 247-252 2013

2021 ◽  
Vol 193 (8) ◽  
Author(s):  
Desmond Tichaona Mugadza ◽  
Sibusisiwe Isabel Nduku ◽  
Edlyn Gweme ◽  
Sherpherd Manhokwe ◽  
Patience Marume ◽  
...  

2020 ◽  
Vol 31 (2) ◽  
pp. 99-105
Author(s):  
Hemant Pathak

AbstractThe present study uses numerous chemometric techniques to evaluate and interpret a water quality data obtained from the drinking water resources namely municipal water (supplied by Rajghat dam on Bewas River), bore well, ground water of Sagar city, a divisional headquarter of Madhya Pradesh, India. Data was collected from May 2018 to June 2019 for 10 parameters used to assess the status of the water quality. Water quality was monitored at 15 sampling stations along the entire district. The data were analyzed using chemometric analysis such as principal component analysis, correlation matrix, multivariate linear regression analysis and hierarchical cluster analysis that reduced the data dimensions for better interpretation. Results of statistical analysis expressed that slightly higher value of BOD in some areas due to sewage contamination, need of chlorination treatment required at those places. This study also presents the value of diverse statistical methods for assessment and analysis of drinking water quality data for the reason of monitoring the effectiveness of water resource management. The study indicated that the maximum quality parameters of drinking water is in permissible limits of WHO and IS: 10500 guidelines on entire study places.


2016 ◽  
Vol 78 (11) ◽  
Author(s):  
Manutha Appa Rwoo ◽  
Hafizan Juahir ◽  
Nor Malisa Roslan ◽  
Mohd Ekhwan Toriman ◽  
Azizah Endut ◽  
...  

This case study characterizes the drinking water quality by using the multivariate technique. The spatial variation of the physico-chemical and heavy metals parameters toxicity with the drinking water quality based on 28 water treatment plants in Selangor, Malaysia from 2009 to 2012 was evaluated. The objectives of this study are to analyze the physio-chemical activities and heavy metals activities in the collected drinking water samples from the treatment plants, and to detect the source of pollution for the most revealing parameters. The discriminant analysis (DA) and the principal component analysis (PCA) are the chemometric techniques used to investigate the spatial variation of the most significant physico-chemical and heavy metal parameters of the drinking water samples. The classification matrix accuracy for standard mode of DA, forward stepwise and backward stepwise for the physico-chemical and heavy metal parameters are excellent. PCA highlighted 13 significant parameters out of 18 physico-chemical water quality parameters and 14 significant parameters out of 16 heavy metal parameters. PCA was carried out to identify the origin and source of pollution of each water quality parameters. For that reason, this study proves that chemometric method is the principle way to explain the characteristic of the drinking water quality.


2007 ◽  
Vol 140 (1-3) ◽  
pp. 119-122 ◽  
Author(s):  
Charu Parashar ◽  
Neelam Verma ◽  
Savita Dixit ◽  
Rajneesh Shrivastava

2021 ◽  
Vol 9 ◽  
Author(s):  
Chiqian Zhang ◽  
Jingrang Lu

Opportunistic pathogens (OPs) are natural inhabitants and the predominant disease causative biotic agents in municipal engineered water systems (EWSs). In EWSs, OPs occur at high frequencies and concentrations, cause drinking-water-related disease outbreaks, and are a major factor threatening public health. Therefore, the prevalence of OPs in EWSs represents microbial drinking water quality. Closely or routinely monitoring the dynamics of OPs in municipal EWSs is thus critical to ensuring drinking water quality and protecting public health. Monitoring the dynamics of conventional (fecal) indicators (e.g., total coliforms, fecal coliforms, and Escherichia coli) is the customary or even exclusive means of assessing microbial drinking water quality. However, those indicators infer only fecal contamination due to treatment (e.g., disinfection within water utilities) failure and EWS infrastructure issues (e.g., water main breaks and infiltration), whereas OPs are not contaminants in drinking water. In addition, those indicators appear in EWSs at low concentrations (often absent in well-maintained EWSs) and are uncorrelated with OPs. For instance, conventional indicators decay, while OPs regrow with increasing hydraulic residence time. As a result, conventional indicators are poor indicators of OPs (the major aspect of microbial drinking water quality) in EWSs. An additional or supplementary indicator that can well infer the prevalence of OPs in EWSs is highly needed. This systematic review argues that Legionella as a dominant OP-containing genus and natural inhabitant in EWSs is a promising candidate for such a supplementary indicator. Through comprehensively comparing the behavior (i.e., occurrence, growth and regrowth, spatiotemporal variations in concentrations, resistance to disinfectant residuals, and responses to physicochemical water quality parameters) of major OPs (e.g., Legionella especially L. pneumophila, Mycobacterium, and Pseudomonas especially P. aeruginosa), this review proves that Legionella is a promising supplementary indicator for the prevalence of OPs in EWSs while other OPs lack this indication feature. Legionella as a dominant natural inhabitant in EWSs occurs frequently, has a high concentration, and correlates with more microbial and physicochemical water quality parameters than other common OPs. Legionella and OPs in EWSs share multiple key features such as high disinfectant resistance, biofilm formation, proliferation within amoebae, and significant spatiotemporal variations in concentrations. Therefore, the presence and concentration of Legionella well indicate the presence and concentrations of OPs (especially L. pneumophila) and microbial drinking water quality in EWSs. In addition, Legionella concentration indicates the efficacies of disinfectant residuals in EWSs. Furthermore, with the development of modern Legionella quantification methods (especially quantitative polymerase chain reactions), monitoring Legionella in ESWs is becoming easier, more affordable, and less labor-intensive. Those features make Legionella a proper supplementary indicator for microbial drinking water quality (especially the prevalence of OPs) in EWSs. Water authorities may use Legionella and conventional indicators in combination to more comprehensively assess microbial drinking water quality in municipal EWSs. Future work should further explore the indication role of Legionella in EWSs and propose drinking water Legionella concentration limits that indicate serious public health effects and require enhanced treatment (e.g., booster disinfection).


2021 ◽  
Vol 7 (4) ◽  
pp. 797-808
Author(s):  
Nicole C. Rockey ◽  
Yun Shen ◽  
Sarah-Jane Haig ◽  
Madeleine Wax ◽  
James Yonts ◽  
...  

This study elucidates the short- and long-term impacts of lead service line replacement in Flint homes following a corrosion event.


2018 ◽  
Vol 7 (3.14) ◽  
pp. 115
Author(s):  
H M. Zolkipli ◽  
H Juahir ◽  
G Adiana ◽  
N Zainuddin ◽  
A Ismail ◽  
...  

The objectives of this study are to determine the most significant spatial variation of drinking water pollutant and to identify the most significant parameters in each group of physico- chemical parameters (PCPs), Inorganic parameters (IOPs), heavy metals and organic parameters (HMOPs) and pesticides parameters (PPs). The Discriminant Analysis (DA) and One- Way Analysis of variance (ANOVA) showed spatial variation on four station categories and the variance of four group parameter in water drinking quality while principle component analysis (PCA) was carried out to identify the most significant of each water quality parameters base on given group. DA and ANOVA successfully reduced the physico and inorganic pollutants concentration with significant value 98.63% and 96.90%. PCA revealed six most significant drinking water quality parameters for PCPs, nine significant parameters for IOPs, fourteen parameters on HMOPs and four significant of PPs with the p value less than 0.05 (p < 0.05). Therefore, this study proves that chemometric method is the alternative way to explain the characteristic of the drinking water quality and could reduce several parameters and sampling points in the future sampling strategy.  


Sign in / Sign up

Export Citation Format

Share Document