scholarly journals In Planta Genetic Transformation of Mungbean (Vigna radiata (L.) Wilczek) with Marker Gene

2019 ◽  
Vol 29 (2) ◽  
pp. 245-255
Author(s):  
Mohammad Mahmood Hasan ◽  
Sujay Kumar Bhajan ◽  
M. Imdadul Hoque ◽  
R.H. Sarker ◽  
Mohammad Nurul Islam

In genetic improvement of mungbean much success has not been achieved due to its recalcitrant nature towards in vitro regeneration. An attempt was made to develop an Agrobacterium-mediated in planta genetic transformation protocol for a locally grown mungbean variety BARI Mung-3 using a screenable marker gene. Two minutes of vacuum infiltration followed by 60 minutes of incubation period in Agrobacterium suspension of Winans’ AB medium containing wounded tobacco leaf extract was found most suitable towards genetic transformation in pricked de-coated half seed explants. An optical density (OD600) of 0.7 was found most effective for transient gus gene expression. Chimeric GUS expression was observed in the root and leaf tissues from the successfully transformed plantlets obtained through in planta transformation. This methodology of genetic transformation was found more suitable, easier and less time consuming than tissue culture based genetic transformation, which may be used for the genetic improvement of mungbean.

Author(s):  
Paras Pandey ◽  
Meenal Rathore ◽  
N. P. Singh

Black gram (Vigna mungo) is a treasure trove legume in terms of nutritional efficiency and medicinal values and an important pulse that is cultivated throughout India in all three seasons. However, its production and productivity is constrained due to abiotic and biotic stresses.Though technology has aided in genetic improvement of the crop, the narrow genetic base remains a potential constraint. In vitro regeneration and genetic transformation have aided to its genetic improvement, yet a lot remains to be explored and harnessed for efficient and effective genetic improvement of the pulse. The review highlights the progress and achievements in context of in vitro regeneration and genetic transformation in blackgram.


2018 ◽  
Vol 7 (1) ◽  
pp. 1954 ◽  
Author(s):  
Mithilesh Kumar

Buckwheat (Fagopyrum sp.) from family Polygonaceae, with its two main cultivated species (F. esculentumMoench. and F. tataricum) is mostly grown in hilly regions of Eurasia. It is a multipurpose gluten free crop having great nutraceutical value. For plant propagation several reports have been published and significant differences were noticed in culture protocols, genotypes and their success rates. A few studies report genetic transformation in buckwheat with varying degree of success. The present study reviews the in-vitro regeneration and genetic transformation reports in Fagopyrum spp. available in publically available literature and concludes on what needs to be done for the sustainable genetic improvement of buckwheat. A genotype independent high frequency in-vitro regeneration protocol compatible with high end stable genetic transformation is the need of the hour for sustained genetic improvement of this crop.


2012 ◽  
Vol 40 (2) ◽  
pp. 140 ◽  
Author(s):  
Hafiz Mamoon REHMAN ◽  
Iqrar Ahmad RANA ◽  
Siddra IJAZ ◽  
Ghulam MUSTAFA ◽  
Faiz Ahmad JOYIA ◽  
...  

Dalbergia sissoo Roxb. ex DC. (Sissoo) is a native forest tree species in Pakistan. Many ecological and economical uses are associated with this premier timber species, but dieback disease is of major concern. The objective of this study was to develop a protocol for in vitro regeneration of Sissoo that could serve as target material for genetic transformation, in order to improve this species. Callus formation and plantlet regeneration was achieved by culturing cotyledons, immature seeds, and mature embryos on a modified Murashige and Skoog (1962) (MS) medium supplemented with plant growth regulators. Callus induction medium containing 2.71 ?M 2, 4-dichlorophenoxyacetic acid (2,4-D) and 0.93 ?M kinetin produced better callus on all explants tested compared to other treatments, such as 8.88 ?M 6-benzylaminopurine (BA) and 2.69 ?M ?-naphthalene acetic acid (NAA), or 2.71 ?M 2, 4-D and 2.69 ?M NAA. Shoot regeneration was best on MS medium containing 1.4 ?M NAA and 8.88 ?M BA compared to other treatments, such as 1.4 ?M NAA and 9.9 ?M kinetin, or 2.86 ?M indole-3-acetic acid and 8.88 ?M BA. Murashige and Skoog medium containing 1.4 NAA ?M and 8.88 ?M BA was better in general for regeneration regardless of callus induction medium and the type of explant used. Rooting was best on half-strength MS medium with 7.35 ?M indole-3-butyric acid. Regenerated plantlets were acclimatized for plantation in the field. Preliminary genetic transformation potential of D. sissoo was evaluated by particle bombardment of callus explants with a pUbiGus vector. The bombarded tissue showed transient Gus activity 1week after bombardment. Transformation of this woody tree is possible provided excellent regeneration protocols. The best combination for regeneration explained in this study is one of such protocols.


1970 ◽  
Vol 20 (2) ◽  
pp. 145-155 ◽  
Author(s):  
Rita Sarah Borna ◽  
M. I. Hoque ◽  
R. H. Sarker

Genetic transformation using nodal and internodal segments from three economically important potato (Solanum tuberosum L.) varieties namely, Diamant, Cardinal and Granola was conducted using an Agrobacterium tumefaciens strain LBA4404 harbouring binary plasmid pBI12 containing the GUS and nptII genes. Node and internodal segments were used for direct regeneration as well as regeneration with the intervention of callus. best responses were  obtained for direct regeneration of shoots when the explants were cultured on MS supplemented with 4.0 mg/l BAP +1.0 mg/l IAA, 1.5 mg/l BAP  + 0.5 mg/l IAA and 5.0 mg/l BAP +1.0 mg/l IAA in Diamant, Cardinal  and  Granola, respectively. In Diamant spontaneous in vitro microtuberization was obtained from these proliferated shoots. Further culturing of these in vitro grown green microtubers regenerated a large number of shoots on MS containing 4.0 mg/l BAP +1.0 mg/l IAA. By combining the best treatments, this protocol yielded an average transformation rate of 87% of treared explants. Stable expression of GUS gene was visualized in the various parts of transformed shoots through histochemical assay. Genomic DNA was isolated from transformed shoots and stable integration of the GUS and nptII genes was confirmed by PCR analysis.   Key words:  Potato, in vitro regeneration, transformation   D.O.I. 10.3329/ptcb.v20i2.6894   Plant Tissue Cult. & Biotech. 20(2): 145-155, 2010 (December)


1970 ◽  
Vol 19 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Rakha Hari Sarker ◽  
Khaleda Islam ◽  
M.I. Hoque

Agrobacterium-mediated genetic transformation system has been developed for two tomato (Lycopersicon esculentum Mill.) varieties, namely Pusa Ruby (PR) and BARI Tomato-3 (BT-3). Prior to the establishment of transformation protocol cotyledonary leaf explants from the two varieties were cultured to obtain genotype independent in vitro regeneration. Healthy multiple shoot regeneration was obtained from the cut ends of cotyledonary leaf segments for both the varieties on MS containing 1.0 mg/l BAP and 0.1 mg/l IAA. The maximum root induction from the regenerated shoots was achieved on half the strength of MS medium supplemented with 0.2 mg/l IAA. The in vitro grown plantlets were successfully transplanted into soil where they flowered and produced fruits identical to those developed by control plants. Transformation ability of cotyledonary leaf explants was tested with Agrobacterium tumefaciens strain LBA4404 harboring binary plasmid pBI121, containing GUS and npt II genes. Transformed cotyledonary leaf explants were found to produce multiple shoots on MS containing 1.0 mg/l BAP and 0.1 mg/l IAA. Selection of the transformed shoots was carried out by gradually increasing the concentration of kanamycin to 200 mg/l since kanamycin resistant gene was used for transformation experiments. Shoots that survived under selection pressure were subjected to rooting. Transformed rooted plantlets were transferred to soil. Stable expression of GUS gene was detected in the various tissues from putatively transformed plantlets using GUS histochemical assay.  Key words: In vitro regeneration, transformation, tomato D.O.I. 10.3329/ptcb.v19i1.5004 Plant Tissue Cult. & Biotech. 19(1): 101-111, 2009 (June)


1996 ◽  
Vol 16 (3-4) ◽  
pp. 142-146 ◽  
Author(s):  
Isabelle Roussy ◽  
Frédéric Dubois ◽  
Rajbir S. Sangwan ◽  
Brigitte S. Sangwan-Norreel

Sign in / Sign up

Export Citation Format

Share Document