scholarly journals Hydro-Priming of Seed Improves the Water Use Efficiency, Grain Yield and Net Economic Return of Wheat under Different Moisture Regimes

2014 ◽  
Vol 11 (2) ◽  
pp. 149-159 ◽  
Author(s):  
Raj Pal Meena ◽  
R Sendhil ◽  
SC Tripathi ◽  
Subhash Chander ◽  
RS Chhokar ◽  
...  

Wheat is the second most important staple food crop of India and contributes a major share to food basket of the country. Since majority of the area under wheat is irrigated, it consumes huge quantity of fresh water for its cultivation. The availability of good quality water for irrigation is decreasing over a period of time due to vagaries of monsoon, urbanization and industrialization. The biggest challenge on this front is to improve the efficiency and productivity of water being used in existing cropping system. Therefore, it is the need of hour to improve water use efficiency for wheat production. In the milieu, the present investigation was taken with an objective of studying the effect of pre-germinated seed in crop establishment under sub-optimal soil moisture conditions by using the residual soil moisture after harvesting of rice in Indo-Gangetic plains, so that pre sowing irrigation requirement for crop establishment may be cut and reduced in time period which require from pre-sowing irrigation to field preparation. This experiment was conducted for two consecutive years 2010-11 and 2011-12 to evaluate the influence of hydropriming on the water use efficiency and grain yield of wheat (Triticum aestivum L.) under moisture stress. The experiment was conducted in split plot design with three replications keeping moisture stress treatments (optimum moisture, sub-optimal moisture and dry soil followed by irrigation) in main plots and seed priming treatments (dry seed, hydropriming, and pre-germinated seeds) in subplots. Pregerminated seed produced significantly higher grain yield (5.49 t ha-1), which was statistically similar to hydropriming (5.30 t ha-1). Various seeding methods were statistically at par. The hydro-primed and pregerminated seeds established earlier than dry seeds leading to better crop establishment under optimum, sub optimum soil moisture as well as dry soil conditions leading to higher tillering and grain yield. The results of experiment showed that priming with plain water and pre-germinated seeds improved germination indices, seedling growth and crop establishment. Since priming with plain water and to have pregerminated seeds is simple and cheap method, which can increase germination percentage and homogeneity of seedling emergence under water stress conditions and it can be easily used by farmers. Interactive effect of different seed priming techniques along with seeding at sub optimal soil moisture level proved to be an efficient technique for enhancing water productivity of wheat crop. DOI: http://dx.doi.org/10.3329/sja.v11i2.18410 SAARC J. Agri., 11(2): 149-159 (2013)

Irriga ◽  
2018 ◽  
Vol 23 (3) ◽  
pp. 454-466
Author(s):  
Leonardo Chechi ◽  
Luan Junior Kuhn ◽  
Vanderléia Fortuna ◽  
Patricia Mara De Almeida ◽  
Maurício Albertoni Scariot ◽  
...  

As the water stress is one of the main causes for the low maize yield in Brazil, this study aimed to evaluate the yield components, grain yield and the water use efficiency of maize crop submitted to different methods of irrigation depth adjustment and validate the “Lâmina” spreadsheet to recommend irrigation depth in this crop. The treatments applied were: non-use of irrigation (control); irrigation depth adjustment provided by” Lâmina” spreadsheet (Lâmina); soil moisture equivalent to actual capacity of water in the soil at 55% of the total soil water capacity (55% RWC); and soil moisture equivalent to 100% of the field capacity (100% FC). The experimental design was a randomized block design with four replications, each experimental unit consists of a plot 3 meters wide and 3 meters long. The variables analyzed were total water applied, dry matter, ears per plant, kernel rows per ear, kernels per row, kernels per ear, one thousand kernels weight, grain yield and water use efficiency. Grain yields were similar between irrigated treatments, showing significant differences compared to the control. The Lâmina and 55% RWC showed the best results for water use efficiency and yield components. The Lâmina treatment used the least amount of water, with high yields, contributing to the rational water use in irrigated agricultural systems.


2014 ◽  
Vol 7 (5) ◽  
pp. 2193-2222 ◽  
Author(s):  
G. B. Bonan ◽  
M. Williams ◽  
R. A. Fisher ◽  
K. W. Oleson

Abstract. The Ball–Berry stomatal conductance model is commonly used in earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must be empirically parameterized. We evaluated the Ball–Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil–plant–atmosphere continuum (SPA). The SPA model simulates stomatal conductance numerically by (1) optimizing photosynthetic carbon gain per unit water loss while (2) constraining stomatal opening to prevent leaf water potential from dropping below a critical minimum. We evaluated two optimization algorithms: intrinsic water-use efficiency (ΔAn /Δgs, the marginal carbon gain of stomatal opening) and water-use efficiency (ΔAn /ΔEl, the marginal carbon gain of transpiration water loss). We implemented the stomatal models in a multi-layer plant canopy model to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using leaf analyses, eddy covariance fluxes at six forest sites, and parameter sensitivity analyses. The primary differences among stomatal models relate to soil moisture stress and vapor pressure deficit responses. Without soil moisture stress, the performance of the SPA stomatal model was comparable to or slightly better than the CLM Ball–Berry model in flux tower simulations, but was significantly better than the CLM Ball–Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from water flow along the soil-to-leaf pathway rather than being imposed a priori, as in the CLM Ball–Berry model. Similar functional dependence of gs on Ds emerged from the ΔAn/ΔEl optimization, but not the ΔAn /gs optimization. Two parameters (stomatal efficiency and root hydraulic conductivity) minimized errors with the SPA stomatal model. The critical stomatal efficiency for optimization (ι) gave results consistent with relationships between maximum An and gs seen in leaf trait data sets and is related to the slope (g1) of the Ball–Berry model. Root hydraulic conductivity (Rr*) was consistent with estimates from literature surveys. The two central concepts embodied in the SPA stomatal model, that plants account for both water-use efficiency and for hydraulic safety in regulating stomatal conductance, imply a notion of optimal plant strategies and provide testable model hypotheses, rather than empirical descriptions of plant behavior.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Rajesh Kumar Soothar ◽  
Ashutus Singha ◽  
Shakeel Ahmed Soomro ◽  
Azhar-u-ddin Chachar ◽  
Faiza Kalhoro ◽  
...  

Abstract Background Climate change and increasing demand in non-agricultural sectors profoundly affect the availability and quality of water resources for irrigated agriculture. The FAO AquaCrop simulation model provides a sound theoretical framework to investigate crop yield response to environmental stress. This model has successfully simulated crop growth and yield as influenced by varying soil moisture environments for crops. Integrating crop models that simulate the effects of water on crop yield with targeted experimentation can facilitate the development of irrigation strategies for high yield procurement and improving farm level water management and water use efficiency (WUE) under climatic condition of District Hyderabad, Sindh, Pakistan. Results This study was based on completely randomized block design with three treatments including T1 (30% soil moisture depletion), T2 (50% soil moisture depletion) and T3 (70% soil moisture depletion) with three replicates. In order to determine the crop water requirements under desired treatments, the gypsum blocks were used for computing the daily soil moisture depletion. The result shows that total volume of water applied to crop under T1, T2 and T3 was 9689, 5200 and 2045 m3 ha−1, respectively. As a result, the grain yield under T1, T2 and T3 was 13.2, 12.1 and 14.3 t ha−1, respectively. These results advocate that total yield of crop under T1 and T2 was less as compared to T3. The T3 gave higher yield and WUE compared than other treatments. On the other hand, results revealed that the simulated sunflower yields showed a good agreement with their measured under T3. The simulated grain yield was 15.5 t ha−1, while the measured yield varied from 12.1 to 14.3 t ha−1. This study suggested that WUE under T3 was more as compared to T1 and T2. The results showed that the T3 gave the highest crop yield in relation to WUE and optimize yield of sunflower crop under water scarcity. Conclusion The Aquacrop model could very well predict crop yield and WUE at T3 under experiential region for sunflower production.


1962 ◽  
Vol 42 (1) ◽  
pp. 7-12 ◽  
Author(s):  
S. J. Bourget ◽  
R. B. Carson

Yields of oats and alfalfa grown in two soils in the greenhouse, with and without fertilizer, usually decreased with increasing moisture stress obtained by depleting the available moisture to 75, 50, 25 and nearly 0 per cent.An application of 6-20-20 fertilizer for oats and of 0-20-20 for alfalfa at the rate of 1000 pounds per acre gave a marked increase in crops yield and it resulted in a more efficient use of water by the crops than was obtained without fertilizer, although the total amount of water used was greater with than without fertilizer. The water-use efficiency values for oats usually increased with decreasing available water whereas those for alfalfa were less consistent.The composition in nitrogen, phosphorus, potassium, calcium and magnesium of the plant tissues did not vary greatly. However, the phosphorus content of oats grain decreased with increasing soil moisture stress unless fertilizer was added, indicating that soil phosphorus became less available for oats at high moisture stress.


2014 ◽  
Vol 7 (3) ◽  
pp. 3085-3159 ◽  
Author(s):  
G. B. Bonan ◽  
M. Williams ◽  
R. A. Fisher ◽  
K. W. Oleson

Abstract. The empirical Ball–Berry stomatal conductance model is commonly used in Earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must both be empirically parameterized. We evaluated the Ball–Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil–plant–atmosphere continuum (SPA) to numerically optimize photosynthetic carbon gain per unit water loss while preventing leaf water potential dropping below a critical minimum level. We evaluated two alternative optimization algorithms: intrinsic water-use efficiency (Δ An/Δ gs, the marginal carbon gain of stomatal opening) and water-use efficiency (Δ An/Δ El, the marginal carbon gain of water loss). We implemented the stomatal models in a multi-layer plant canopy model, to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using: (1) leaf analyses; (2) canopy net radiation, sensible heat flux, latent heat flux, and gross primary production at six AmeriFlux sites spanning 51 site–years; and (3) parameter sensitivity analyses. Without soil moisture stress, the performance of the SPA stomatal conductance model was generally comparable to or somewhat better than the Ball–Berry model in flux tower simulations, but was significantly better than the Ball–Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from the physiological theory linking leaf water-use efficiency and water flow to and from the leaf along the soil-to-leaf pathway rather than being imposed a priori, as in the Ball–Berry model. Similar functional dependence of gs on Ds emerged from the water-use efficiency optimization. Sensitivity analyses showed that two parameters (stomatal efficiency and root hydraulic conductivity) minimized errors with the SPA stomatal conductance model. The critical stomatal efficiency for optimization (ι) was estimated from leaf trait datasets and is related to the slope parameter (g1) of the Ball–Berry model. The optimized parameter value was consistent with this estimate. Optimized root hydraulic conductivity was consistent with estimates from literature surveys. The two central concepts embodied in the stomatal model, that plants account for both water-use efficiency and for hydraulic safety in regulating stomatal conductance, imply a notion of optimal plant strategies and provide testable model hypotheses, rather than empirical descriptions of plant behavior.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1010
Author(s):  
Jian Luo ◽  
Zimeng Liang ◽  
Luoyan Xi ◽  
Yuncheng Liao ◽  
Yang Liu

The purpose of this study was to investigate whether combining plastic-covered ridge and furrow planting (RF) and supplemental irrigation based on measuring soil moisture (SIMSM) can increase the grain yield and water use efficiency (WUE) of wheat (Triticum aestivum L.) in irrigated fields of Loess Plateau, China. In 2016–2018, the experiment was conducted at Doukou experimental farm (34°36′ N, 108°52′ E) with two plant systems (RF and traditional planting (TF)) and three irrigation treatments (S1 and S2: SIMSM with a target relative soil water content of 85% and 100%, respectively). The results suggest that under the TF system, SIMSM decreased the grain yield and nitrogen utilization. The reason for this may be the local low precipitation. However, the combination of RF and S2 significantly increased the WUE, protein and wet gluten concentration in the grain. In addition, the grain yield of the RF plus S2 treatment was not significantly different than that of the traditional irrigation method. These results suggest that combining RF and SIMSM with a target relative soil water content of 100% is beneficial to the synergistic improvement of the wheat yield, the wheat quality, and the water and fertilizer use efficiency in irrigated fields on the Loess Plateau.


1978 ◽  
Vol 14 (4) ◽  
pp. 389-394 ◽  
Author(s):  
K. Anand Reddy ◽  
B. Bhasker Reddy ◽  
K. Balaswamy ◽  
A. Venkatachari

SUMMARYIn a two-year study the yields and water use of corn were studied under four planting patterns, with different soil moisture regimes and organic (paddy straw) mulches. Normal planting and irrigation resulted in higher yields and lowest water use efficiency, while double file planting in deep furrows (rafter method) gave greatest efficiency of water use but with a slight decrease in grain yield. Mulches improved water use efficiency by 50–60% and reduced irrigation requirements by four to six irrigations. Under limited moisture conditions a combination of these practices is likely to reduce irrigation requirements by half and to double water use efficiency.


1987 ◽  
Vol 67 (4) ◽  
pp. 811-823
Author(s):  
J. L. DIONNE ◽  
A. R. PESANT ◽  
G. M. BARNETT

The objectives of this study were to determine the changes in yield response and water use efficiency of alfalfa (Medicago sativa L. 'Saranac') and timothy (Phleum pratense L. 'Climax') to potassium applications and variations in soil moisture regimes. For each of the two test crops the factorial combination of the following treatments were replicated three times: three soils (Ste Rosalie clay, Greensboro loam, and Danby sandy loam), potassium (0, 25, 50 and 100 mg K kg−1 of dry soil) and three moisture levels: (1) optimal, 70–100% of available water (AW); (2) semi-dry, 0–100% AW; and (3) dry, 0–50% AW. Yield increases of 68% for alfalfa and 40% for timothy were produced by potassium applied to soil under the optimal moisture regime with almost no yield increase under dry soil moisture conditions. Water use efficiency was higher for alfalfa than for timothy, and increased with rates of potassium on Greensboro loam and Danby sandy loam but not on Ste Rosalie clay. Potassium content of alfalfa was lower when grown at optimal soil moisture than in the dry regime. Differences in potassium content between moisture regimes were small for timothy. Due to higher yields, potassium uptake by alfalfa was greater when soils were cropped at optimal moisture. However, less exchangeable potassium was found after the experiment in soils cropped to alfalfa in the optimal moisture regime than in soils under the dry moisture regime. Therefore potassium fertilizer was most effective at the optimal moisture level (near field capacity). Key words: Potassium fertilization, exchangeable potassium, soil moisture regime, potassium uptake, alfalfa, timothy


Sign in / Sign up

Export Citation Format

Share Document