An Assessment of Numerical Approaches Toward Multi-Phase Hydrodynamic Modelling of Inert Gas Stirred Ladle Systems

Author(s):  
R. Mishra ◽  
D. Mazumdar
Author(s):  
J. S. Lally ◽  
L. E. Thomas ◽  
R. M. Fisher

A variety of materials containing many different microstructures have been examined with the USS MVEM. Three topics have been selected to illustrate some of the more recent studies of diffraction phenomena and defect, grain and multi-phase structures of metals and minerals.(1) Critical Voltage Effects in Metals and Alloys - This many-beam dynamical diffraction phenomenon, in which some Bragg resonances vanish at certain accelerating voltages, Vc, depends sensitively on the spacing of diffracting planes, Debye temperature θD and structure factors. Vc values can be measured to ± 0.5% in the HVEM ana used to obtain improved extinction distances and θD values appropriate to electron diffraction, as well as to probe local bonding effects and composition variations in alloys.


Author(s):  
O. M. Katz

The swelling of irradiated UO2 has been attributed to the migration and agglomeration of fission gas bubbles in a thermal gradient. High temperatures and thermal gradients obtained by electron beam heating simulate reactor behavior and lead to the postulation of swelling mechanisms. Although electron microscopy studies have been reported on UO2, two experimental procedures have limited application of the results: irradiation was achieved either with a stream of inert gas ions without fission or at depletions less than 2 x 1020 fissions/cm3 (∼3/4 at % burnup). This study was not limited either of these conditions and reports on the bubble characteristics observed by transmission and fractographic electron microscopy in high density (96% theoretical) UO2 irradiated between 3.5 and 31.3 x 1020 fissions/cm3 at temperatures below l600°F. Preliminary results from replicas of the as-polished and etched surfaces of these samples were published.


Author(s):  
Xiao Zhang

Polymer microscopy involves multiple imaging techniques. Speed, simplicity, and productivity are key factors in running an industrial polymer microscopy lab. In polymer science, the morphology of a multi-phase blend is often the link between process and properties. The extent to which the researcher can quantify the morphology determines the strength of the link. To aid the polymer microscopist in these tasks, digital imaging systems are becoming more prevalent. Advances in computers, digital imaging hardware and software, and network technologies have made it possible to implement digital imaging systems in industrial microscopy labs.


1978 ◽  
Vol 125 (6) ◽  
pp. 331-349 ◽  
Author(s):  
Boris M. Smirnov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document