Features Choice of Light Sources for Bio-Technical Life Support Systems for Space Applications

2018 ◽  
pp. 117-121
Author(s):  
Alexander A. Tikhomirov ◽  
Sophia A. Ushakova ◽  
Valentin N. Shikhov

The historical aspects and prospects of the use of artificial light sources in the biological and technical systems of life support for space applications are considered. According to the given data, the most promising for such systems are LED light sources. Based on the results of photobiological studies it is shown that radiation, perceived by a man as white, in his spectral efficiency unreliable differs from radiation, a spectral curve similar to the average action spectrum of photosynthesis the green sheet (“Phyto”). In accordance with this, the possibility of choosing either a phyto spectrum or a spectrum close to the equal energy for the cultivation of plants in life support systems is justified.

2019 ◽  
Vol 116 ◽  
pp. 00030
Author(s):  
Kamil Janiak ◽  
Anna Jurga ◽  
Joanna Kuźma ◽  
Włodzimierz Breś

Design of efficient and robust life support systems will require huge effort. In closed systems such as future extra-terrestrial colonies or spaceships, all produced wastes will have to be perfectly purified and all resources will have to be recovered. This isn’t possible now even in life support systems built on Earth. Future extra-terrestrial closed life support system will have to be robust and simple as possible to decrease risk of failure and transport costs. One of the attempts to simplify the treatment of wastes is to use greywater as water source in soil-less cultivation without pretreatment. In this paper results of two lab-scale aeroponic experiments are shown. These experiments were aimed at determining possibility of using grey water directly as water source for aeroponic cultivation of lettuce. Two surfactants (SBDS,SMCT) with concentrations varying from 0.08 to 1.5 g/L and model grey water (containing SLES surfactant) were tested. Experiments shown that high concentrations of SBDS and SMCT are detrimental for lettuce growth while similar concentration of SLES inhibit but do not stop lettuce growth. With lower concentrations of surfactants growth of lettuce is possible. Moreover results shows decrease in surfactants mass in model grey water used as nutrient solution which may indicate development of bacteria in root zone that are able to use surfactants as substrates.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mark Nelson

Biosphere 2, the largest and most biodiverse closed ecological system facility yet created, has contributed vital lessons for living with our planetary biosphere and for long-term habitation in space. From the space life support perspective, Biosphere 2 contrasted with previous BLSS work by including areas based on Earth wilderness biomes in addition to its provision for human life support and by using a soil-based intensive agricultural system producing a complete human diet. No previous BLSS system had included domestic farm animals. All human and domestic animal wastes were also recycled and returned to the crop soils. Biosphere 2 was important as a first step towards learning how to miniaturize natural ecosystems and develop technological support systems compatible with life. Biosphere 2’s mostly successful operation for three years (1991-1994) changed thinking among space life support scientists and the public at large about the need for minibiospheres for long-term habitation in space. As an Earth systems laboratory, Biosphere 2 was one of the first attempts to make ecology an experimental science at a scale relevant to planetary issues such as climate change, regenerative agriculture, nutrient and water recycling, loss of biodiversity, and understanding of the roles wilderness biomes play in the Earth’s biosphere. Biosphere 2 aroused controversy because of narrow definitions and expectations of how science is to be conducted. The cooperation between engineers and ecologists and the requirement to design a technosphere that supported the life inside without harming it have enormous relevance to what is required in our global home. Applications of bioregenerative life support systems for near-term space applications such as initial Moon and/or Mars bases, will be severely limited by high costs of transport to space and so will rely on lighter weight, hydroponic systems of growing plants which will focus first on water and air regeneration and gradually increase its production of food required by astronauts or inhabitants. The conversion of these systems to more robust and sustainable systems will require advanced technologies, e.g., to capture sunlight for plant growth or process usable materials from the lunar or Martian atmosphere and regolith, leading to greater utilization of in situ space resources and less on transport from Earth. There are many approaches to the accomplishment of space life support. Significant progress has been made especially by two research efforts in China and the MELiSSA project of the European Space Agency. These approaches use cybernetic controls and the integration of intensive modules to accomplish food production, waste treatment and recycling, atmospheric regeneration, and in some systems, high-protein production from insects and larvae. Biosphere 2 employed a mix of ecological self-organization and human intervention to protect biodiversity for wilderness biomes with a tighter management of food crops in its agriculture. Biosphere 2’s aims were different than bioregenerative life support systems (BLSS) which have focused exclusively on human life support. Much more needs to be learned from both smaller, efficient ground-based BLSS for nearer-term habitation and from minibiospheric systems for long-term space application to transform humanity and Earth-life into truly multiplanet species.


Author(s):  
Boris F. ZARETSKIY ◽  
Arkadiy S. GUZENBERG ◽  
Igor A. SHANGIN

Life support for first manned spaceflights was based on supplies of consumables. Crew life support systems based on supplies of water and oxygen, in spite of their simplicity, are extremely inefficient in orbital space missions and are unfeasible in deep space missions because of mass and volume constraints. Therefore, there are currently developed and are to be used on space stations the life support systems that are based on chemical and physical regeneration of water and oxygen extracted from human waste. In view of further advances in long-duration orbital stations, and the prospects of establishment of planetary outposts and deep space exploration, the problem of constructing an automated system for controlling a suite of regenerative LSS becomes urgent. The complexity of solving the problem of constructing an efficient control system in this case owes to the existence of a large number of effectiveness criteria. The paper proposes a system of consolidated global efficiency criteria, which allows to break up this problem into a series of sub-problems of optimization in order to solve this problem. The proposed criteria are longevity, cost, comfort. The paper presents a series of specific examples of using the proposed principles with necessary generalizations. Key words: space life support systems, atmosphere revitalization equipment, automated control system, global generalized efficiency criteria, longevity, cost, comfort.


1990 ◽  
Author(s):  
Jr. Krutz ◽  
Nesthus Robert W. ◽  
Scott Thomas E. ◽  
Webb William R. ◽  
Noles James T. ◽  
...  

2020 ◽  
Vol 14 (1) ◽  
pp. 12-28
Author(s):  
Jingang Jiang ◽  
Yihao Chen ◽  
Xuefeng Ma ◽  
Yongde Zhang ◽  
Zhiyuan Huang ◽  
...  

Background: Portable life support system is used in the battlefield, disaster and in other special circumstances such as in space exploration, and underground survey to give the wounded a life support. The most dangerous period for the injured is the first hour after an injury, which is a crucial time for treatment. If the patient's vital signs were stabilized, more than 40% of the injured could be saved. The staff can efficiently complete the task if they get effective and stable vital signs during the operation. Therefore, in order to reduce the risk of disaster and battlefield mortality to improve operational safety and efficiency, it is necessary to study the portable life support system. Objective: The study aimed to provide an overview of recent portable life support system and its characteristics and design. Methods: This paper introduces the patents and products related to a portable life support system, and its characteristics and application. Results: This paper summarizes five kinds of portable life support systems which are box type, stretcher type, bed type, backpack type and mobile type. Moreover, the characteristics of different portable life support systems are analyzed. The paper expounds the problems of different types of portable life support systems and puts forward improvement methods to solve the problems. Finally, the paper points out the future development of the system. Conclusion: Portable life support system plays an increasingly important role in health care. In terms of the structure, function and control, further development and improvements are needed, along with the research on portable life support system.


Sign in / Sign up

Export Citation Format

Share Document