scholarly journals Erratum to “A Primer on Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Medically Refractory Epilepsy” by Lee EJ, et al. (J Korean Neurosurg Soc 62 : 353-360, 2019)

2019 ◽  
Vol 62 (4) ◽  
pp. 492-492
Author(s):  
James P. Caruso ◽  
M. Burhan Janjua ◽  
Alison Dolce ◽  
Angela V. Price

OBJECTIVECorpus callosotomy remains an established surgical treatment for certain types of medically refractory epilepsy in pediatric patients. While the traditional surgical approach is often well tolerated, the advent of MR-guided laser interstitial thermal therapy (LITT) provides a new opportunity to ablate the callosal body in a minimally invasive fashion and minimize the risks associated with an open interhemispheric approach. However, the literature is sparse regarding the comparative efficacy and safety profiles of open corpus callosotomy (OCC) and LITT callosotomy. To this end, the authors present a novel retrospective analysis comparing the efficacy and safety of these methods.METHODSPatients who underwent OCC and LITT callosotomy during the period from 2005 to 2018 were included in a single-center retrospective analysis. Patient demographic and procedural variables were collected, including length of stay, procedural blood loss, corticosteroid requirements, postsurgical complications, and postoperative disposition. Pre- and postoperative seizure frequency (according to seizure type) were recorded.RESULTSIn total, 19 patients, who underwent 24 interventions (16 OCC and 8 LITT), were included in the analysis. The mean follow-up durations for the OCC and LITT cohorts were 83.5 months and 12.3 months, respectively. Both groups experienced reduced frequencies of seizure and drop attack frequency postoperatively. Additionally, LITT callosotomy was associated with a significant decrease in estimated blood loss and decreased length of pediatric ICU stay, with a trend of shorter length of hospitalization.CONCLUSIONSLonger-term follow-up and a larger population are required to further delineate the comparative efficacies of LITT callosotomy and OCC for the treatment of pediatric medically refractory epilepsy. However, the authors’ data demonstrate that LITT shows promise as a safe and effective alternative to OCC.


2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jarod L. Roland ◽  
Syed Hassan A. Akbari ◽  
Afshin Salehi ◽  
Matthew D. Smyth

OBJECTIVECorpus callosotomy is a palliative procedure that is effective at reducing seizure burden in patients with medically refractory epilepsy. The procedure is traditionally performed via open craniotomy with interhemispheric microdissection to divide the corpus callosum. Concerns for morbidity associated with craniotomy can be a deterrent to patients, families, and referring physicians for surgical treatment of epilepsy. Laser interstitial thermal therapy (LITT) is a less invasive procedure that has been widely adopted in neurosurgery for the treatment of tumors. In this study, the authors investigated LITT as a less invasive approach for corpus callosotomy.METHODSThe authors retrospectively reviewed all patients treated for medically refractory epilepsy by corpus callosotomy, either partial or completion, with LITT. Chart records were analyzed to summarize procedural metrics, length of stay, adverse events, seizure outcomes, and time to follow-up. In select cases, resting-state functional MRI was performed to qualitatively support effective functional disconnection of the cerebral hemispheres.RESULTSTen patients underwent 11 LITT procedures. Five patients received an anterior two-thirds LITT callosotomy as their first procedure. One patient returned after LITT partial callosotomy for completion of callosotomy by LITT. The median hospital stay was 2 days (IQR 1.5–3 days), and the mean follow-up time was 1.0 year (range 1 month to 2.86 years). Functional outcomes are similar to those of open callosotomy, with the greatest effect in patients with a significant component of drop attacks in their seizure semiology. One patient achieved an Engel class II outcome after anterior two-thirds callosotomy resulting in only rare seizures at the 18-month follow-up. Four others were in Engel class III and 5 were Engel class IV. Hemorrhage occurred in 1 patient at the time of removal of the laser fiber, which was placed through the bone flap of a prior open partial callosotomy.CONCLUSIONSLITT appears to be a safe and effective means for performing corpus callosotomy. Additional data are needed to confirm equipoise between open craniotomy and LITT for corpus callosotomy.


2021 ◽  
Author(s):  
Kelsey D Cobourn ◽  
Imazul Qadir ◽  
Islam Fayed ◽  
Hepzibha Alexander ◽  
Chima O Oluigbo

Abstract BACKGROUND Commercial magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) systems utilize a generalized Arrhenius model to estimate the area of tissue damage based on the power and time of ablation. However, the reliability of these estimates in Vivo remains unclear. OBJECTIVE To determine the accuracy and precision of the thermal damage estimate (TDE) calculated by commercially available MRgLITT systems using the generalized Arrhenius model. METHODS A single-center retrospective review of pediatric patients undergoing MRgLITT for lesional epilepsy was performed. The area of each lesion was measured on both TDE and intraoperative postablation, postcontrast T1 magnetic resonance images using ImageJ. Lesions requiring multiple ablations were excluded. The strength of the correlation between TDE and postlesioning measurements was assessed via linear regression. RESULTS A total of 32 lesions were identified in 19 patients. After exclusion, 13 pairs were available for analysis. Linear regression demonstrated a strong correlation between estimated and actual ablation areas (R2 = .97, P < .00001). The TDE underestimated the area of ablation by an average of 3.92% overall (standard error (SE) = 4.57%), but this varied depending on the type of pathologic tissue involved. TDE accuracy and precision were highest in tubers (n = 3), with average underestimation of 2.33% (SE = 0.33%). TDE underestimated the lesioning of the single hypothalamic hamartoma in our series by 52%. In periventricular nodular heterotopias, TDE overestimated ablation areas by an average of 13% (n = 2). CONCLUSION TDE reliability is variably consistent across tissue types, particularly in smaller or periventricular lesions. Further investigation is needed to understand the accuracy of this emerging minimally invasive technique.


Neurosurgery ◽  
2014 ◽  
Vol 74 (5) ◽  
pp. 562-564
Author(s):  
Pratik Rohatgi ◽  
Brian Anderson ◽  
Einar Bogason ◽  
Nicholas Brandmeir ◽  
Ephraim Church ◽  
...  

2015 ◽  
Vol 12 (1) ◽  
pp. 39-48 ◽  
Author(s):  
D Jay McCracken ◽  
Jon T Willie ◽  
Brad A Fernald ◽  
Amit M Saindane ◽  
Daniel L Drane ◽  
...  

Abstract BACKGROUND Surgery is indicated for cerebral cavernous malformations (CCMs) that cause medically refractory epilepsy. Real-time magnetic resonance thermography (MRT)-guided stereotactic laser ablation (SLA) is a minimally invasive approach to treating focal brain lesions. SLA of CCM has not previously been described. OBJECTIVE To describe MRT-guided SLA, a novel approach to treating CCM-related epilepsy, with respect to feasibility, safety, imaging, and seizure control in 5 consecutive patients. METHODS Five patients with medically refractory epilepsy undergoing standard presurgical evaluation were found to have corresponding lesions fulfilling imaging characteristics of CCM and were prospectively enrolled. Each underwent stereotactic placement of a saline-cooled cannula containing an optical fiber to deliver 980-nm diode laser energy via twist drill craniostomy. MR anatomic imaging was used to evaluate targeting before ablation. MR imaging provided evaluation of targeting and near real-time feedback regarding the extent of tissue thermocoagulation. Patients maintained seizure diaries, and remote imaging (6-21 months postablation) was obtained in all patients. RESULTS Imaging revealed no evidence of acute hemorrhage following fiber placement within presumed CCM. MRT during treatment and immediate postprocedure imaging confirmed the desired extent of ablation. We identified no adverse events or neurological deficits. Four of 5 (80%) patients achieved freedom from disabling seizures after SLA alone (Engel class 1 outcome), with follow-up ranging 12 to 28 months. Reimaging of all subjects (6-21 months) indicated lesion diminution with surrounding liquefactive necrosis, consistent with the surgical goal of extended lesionotomy. CONCLUSION Minimally invasive MRT-guided SLA of epileptogenic CCM is a potentially safe and effective alternative to open resection. Additional experience and longer follow-up are needed.


Sign in / Sign up

Export Citation Format

Share Document