scholarly journals Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples

2015 ◽  
Vol 35 (3) ◽  
pp. 306-313 ◽  
Author(s):  
Abdullah Kilic ◽  
Mohammad J. Alam ◽  
Naradah L. Tisdel ◽  
Dhara N. Shah ◽  
Mehmet Yapar ◽  
...  
2013 ◽  
Vol 62 (9) ◽  
pp. 1428-1434 ◽  
Author(s):  
Elina G. Dobreva ◽  
Ivan N. Ivanov ◽  
Rossitza S. Vathcheva-Dobrevska ◽  
Katucha I. Ivanova ◽  
Galina D. Asseva ◽  
...  

The increasing incidence of Clostridium difficile infection (CDI) in Bulgaria has indicated the need to implement better surveillance approaches. The aim of the present work was to improve the current surveillance of CDI in Bulgaria by introducing innovative methods for identification and typing. One hundred and twenty stool samples obtained from 108 patients were studied over 4 years from which 32 C. difficile isolates were obtained. An innovative duplex EvaGreen real-time PCR assay based on simultaneous detection of the gluD and tcdB genes was developed for rapid C. difficile identification. Four toxigenic profiles were distinguished by PCR: A+B+CDT− (53.1 %, 17/32), A−B+CDT− (28.1 %, 9/32), A+B+CDT+ (9.4 %, 3/32) and A−B−CDT− (9.4 %, 3/32). PCR ribotyping and multilocus variable number of tandem repeat analysis (MLVA7) were used for molecular characterization of the isolates. In total, nine distinct ribotypes were confirmed and the most prevalent for Bulgarian hospitals was 017 followed by 014/020, together accounting for 44 % of all isolates. Eighteen per cent of the isolates (6/32) did not match any of the 25 reference ribotypes available in this study. Twenty-four MLVA7 genotypes were detected among the clinical C. difficile isolates, distributed as follows: five for 017 ribotype, two for 014/020, 001, 002, 012 and 046 each, and one each for ribotypes 023, 070 and 078. The correlation between the typing methods was significant and allowed the identification of several clonal complexes. These results suggest that most C. difficile cases in the eight Bulgarian hospitals studied were associated with isolates belonging to the outbreak ribotypes 017 and 014/20, which are widely distributed in Europe. The real-time PCR protocol for simultaneous detection of gluD and tcdB proved to be very effective and improved C. difficile identification and confirmation of clinical C. difficile isolates.


2020 ◽  
Vol 9 (1) ◽  
pp. 54
Author(s):  
Salem Belkessa ◽  
Daniel Thomas-Lopez ◽  
Karim Houali ◽  
Farida Ghalmi ◽  
Christen Rune Stensvold

The molecular epidemiology of giardiasis in Africa remains unclear. A study was carried out across four hospitals in Algeria. A total of 119 fecal samples from 55 children, 37 adults, and 27 individuals of undetermined age, all scored positive for intestinal parasites by microscopy, and were screened by real-time PCR for Giardia. Molecular characterization of Giardia was performed by assemblage-specific PCR and PCR targeting the triose phosphate isomerase gene (tpi). Of the 119 samples, 80 (67%) were Giardia-positive by real-time PCR. For 48 moderately-highly real-time PCR-positive samples, tpi genotyping assigned 22 samples to Assemblage A and 26 to Assemblage B. Contrary to Assemblage A, Assemblage B exhibited substantial genetic diversity and allelic heterozygosity. Assemblage-specific PCR proved to be specific for discriminating Assemblage A or B but not as sensitive as tpi genotyping. We confirmed that real-time PCR is more sensitive than microscopy for detecting Giardia in stool samples and that robust amplification and sequencing of the tpi gene is feasible when moderate-to-strongly real-time PCR-positive samples are used. This study is one of the few performed in Africa providing genotyping data on Giardia infections in humans. Both assemblages A and B were commonly seen and not associated with specific sociodemographic data.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Beatrice Barda ◽  
Christian Schindler ◽  
Rahel Wampfler ◽  
Shaali Ame ◽  
Said M. Ali ◽  
...  

Abstract Background Diagnosis of soil-transmitted helminths (STHs) in developing countries is commonly based on microscopic detection of eggs in stool samples, using the Kato-Katz (KK) method, which has a poor sensitivity for detecting light intensity infections. We compared the performance of the KK method and real-time PCR in the framework of a randomized trial, which evaluated four novel treatments against Trichuris trichiura and concomitant STH infections. Results Two stool samples obtained from 320 participants were examined at baseline and follow-up with quadruplicate KK and PCR analyses of one of the two samples using “bead-beating” for DNA extraction. At follow-up, 80 samples were negative according to both PCR and KK and 173 were positive with both methods for any of the STHs. Relative to PCR, the calculated sensitivity of KK at follow-up was 83.6%, 43.0% and 53.8% for T. trichiura, for hookworm and for Ascaris lumbricoides, respectively. The sensitivity of PCR compared with KK at this time point was 89.1% for T. trichiura, 72.7% for hookworm and 87.5% for A. lumbricoides. Cure rates (CRs) for T. trichiura and A. lumbricoides were slightly lower with the PCR method. For hookworm CRs with KK were mostly significantly lower, namely 36.7%, 91.1%, 72.2% and 77.8% for moxidectin, moxidectin in combination with tribendimidine, moxidectin in combination with albendazole and albendazole in combination with oxantel pamoate, respectively, whereas with PCR the CRs were 8.3%, 82.6%, 37.1% and 57.1%, respectively. Conclusions In conclusion, a single real-time PCR is as sensitive as quadruplicate KK for T. trichiura and A. lumbricoides detection but more sensitive for hookworm, which has an influence on the estimated treatment efficacy. PCR method with DNA extraction using the “bead-beating protocol” should be further promoted in endemic areas and laboratories that can afford the needed equipment. The study is registered at ISRCTN (no. 20398469).


2017 ◽  
Vol 9 ◽  
pp. 57-60 ◽  
Author(s):  
Valentina Donà ◽  
Odette J. Bernasconi ◽  
Sara Kasraian ◽  
Regula Tinguely ◽  
Andrea Endimiani

2019 ◽  
Vol 57 (5) ◽  
Author(s):  
Rory Gough ◽  
John Ellis ◽  
Damien Stark

ABSTRACT Dientamoeba fragilis is a gastrointestinal trichomonad parasite whose pathogenicity is yet to be determined. The difficulty involved in microscopically diagnosing D. fragilis in feces led to the development of real-time PCR methodologies for the detection of D. fragilis in stool samples. Prevalence studies in Europe show much higher levels of infection where a laboratory-developed real-time assay is the predominant assay for the detection of Dientamoeba fragilis than in regions that use the EasyScreen assay for detection of gastrointestinal pathogens. The aim of this study was to compare a commercially available Dientamoeba fragilis assay (Genetic Signatures EasyScreen assay) to a widely used laboratory-developed real-time PCR method. Two hundred fifty fecal samples were screened using the laboratory-developed real-time assay on four real-time PCR platforms producing a number of discrepant results. Limit-of-detection studies were undertaken to attempt to resolve sensitivity for each platform tested. The presence or absence of Dientamoeba fragilis DNA in discrepant samples was shown using PCR amplicon next-generation sequencing. Eukaryotic 18S diversity profiling was conducted on discrepant samples to identify the presence or absence of additional protozoan species in samples that may be responsible for cross-reactivity seen in these samples. The results revealed the potential for multiple false-positive results when using the laboratory-developed real-time assay across multiple real-time platforms using manufacturer default settings. This report provides recommendations to resolve these issues where possible and suggestions for future prevalence studies, and it emphasizes the EasyScreen assay as the molecular method of choice as well as the need for standardization of detection assays across all nations screening for D. fragilis.


2004 ◽  
Vol 50 (4) ◽  
pp. 269-278 ◽  
Author(s):  
Ann C Grimm ◽  
Jennifer L Cashdollar ◽  
Frederick P Williams ◽  
G Shay Fout

Astrovirus is a common cause of gastroenteritis in humans that has been determined to be responsible for outbreaks of illness in several countries. Since astrovirus can be waterborne, it is important to be able to identify this virus in environmental water. We have developed and optimized a reverse transcription – polymerase chain reaction (RT–PCR) method that was able to amplify all eight astrovirus serotypes in a single reaction. In addition, a positive control construct was designed so that any inhibitors of this astrovirus assay could be detected. The assay was adapted for use in a real-time PCR assay and the sensitivity of these two methods was compared. The real-time assay was then combined with CaCo2 cell culture to produce an integrated cell culture/RT–PCR (ICC/RT–PCR) assay that was able to detect low levels of astrovirus after an incubation of 7 days or less. Also, the sensitivity of the ICC/RT–PCR assay was compared with RT–PCR alone. The methods were used to detect astrovirus in acute phase illness stool samples as well as in a water sample spiked with astrovirus.Key words: astrovirus, RT–PCR, real-time PCR, ICC/RT–PCR, environmental water.


Sign in / Sign up

Export Citation Format

Share Document