scholarly journals Uma revisão narrativa sobre artigos desenvolvidos no sítio experimental Amazon Tall Tower Observatory

2021 ◽  
Vol 10 (14) ◽  
pp. e73101421749
Author(s):  
Valkiria Andrade Costa

Este artigo teve o objetivo de fazer uma revisão narrativa através de uma pesquisa bibliográfica sobre os artigos desenvolvidos no sítio experimental Amazon Tall Tower Observatory (ATTO). Diante do banco de dados proposto pelo Instituto Max Planck, onde se tem todas as publicações revisadas por pares feitas dentro do sítio experimental ATTO desde 2012 até 2021. Então nesse banco de dados, encontrou-se 81 artigos revisados por pares, onde 12 foram classificados como área de pesquisa Estudos Ecológicos (EE), 15 como Condições Meteorológicas e Fluxos (CMF), 48 como Medições da Composição Atmosférica (MCA) e 6 caracterizados como Híbridos (H). O periódico com maior publicações deste projeto é a Atmospheric Chemistry and Physics, tendo publicado 29 artigos desde 2012 até dia 24 de setembro de 2021. Então conclui-se que durante esses 9 anos de publicações, as pesquisas feitas no sítio experimental ATTO foram de grande importância para o entendimento dos efeitos das mudanças climáticas na Floresta Amazônica e espera-se um aumento crescente nessas pesquisas ao longo dos anos.

2007 ◽  
Vol 7 (4) ◽  
pp. 12657-12686 ◽  
Author(s):  
K. Hungershöfer ◽  
K. Zeromskiene ◽  
Y. Iinuma ◽  
G. Helas ◽  
J. Trentmann ◽  
...  

Abstract. A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany) as part of the 'Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere' (EFEU) project. Using the measured size distributions as well as mass scattering and absorption efficiencies, Mie calculations provided mean effective refractive indices of 1.60−0.010i and 1.56−0.010i (λ=0.55 μm) for smoke particles emitted from the combustion of savanna grass and an African hardwood (musasa), respectively. The relatively low imaginary parts suggest that the light-absorbing carbon of the investigated fresh biomass burning aerosol is only partly graphitized, resulting in strongly scattering and less absorbing particles. While the observed variability in mass scattering efficiencies was consistent with changes in particle size, the changes in the mass absorption efficiency can only be explained, if the chemical composition of the particles varies with combustion conditions.


2015 ◽  
Vol 15 (18) ◽  
pp. 10723-10776 ◽  
Author(s):  
M. O. Andreae ◽  
O. C. Acevedo ◽  
A. Araùjo ◽  
P. Artaxo ◽  
C. G. G. Barbosa ◽  
...  

Abstract. The Amazon Basin plays key roles in the carbon and water cycles, climate change, atmospheric chemistry, and biodiversity. It has already been changed significantly by human activities, and more pervasive change is expected to occur in the coming decades. It is therefore essential to establish long-term measurement sites that provide a baseline record of present-day climatic, biogeochemical, and atmospheric conditions and that will be operated over coming decades to monitor change in the Amazon region, as human perturbations increase in the future. The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine rain forest region in the central Amazon Basin, about 150 km northeast of the city of Manaus. Two 80 m towers have been operated at the site since 2012, and a 325 m tower is nearing completion in mid-2015. An ecological survey including a biodiversity assessment has been conducted in the forest region surrounding the site. Measurements of micrometeorological and atmospheric chemical variables were initiated in 2012, and their range has continued to broaden over the last few years. The meteorological and micrometeorological measurements include temperature and wind profiles, precipitation, water and energy fluxes, turbulence components, soil temperature profiles and soil heat fluxes, radiation fluxes, and visibility. A tree has been instrumented to measure stem profiles of temperature, light intensity, and water content in cryptogamic covers. The trace gas measurements comprise continuous monitoring of carbon dioxide, carbon monoxide, methane, and ozone at five to eight different heights, complemented by a variety of additional species measured during intensive campaigns (e.g., VOC, NO, NO2, and OH reactivity). Aerosol optical, microphysical, and chemical measurements are being made above the canopy as well as in the canopy space. They include aerosol light scattering and absorption, fluorescence, number and volume size distributions, chemical composition, cloud condensation nuclei (CCN) concentrations, and hygroscopicity. In this paper, we discuss the scientific context of the ATTO observatory and present an overview of results from ecological, meteorological, and chemical pilot studies at the ATTO site.


2008 ◽  
Vol 8 (13) ◽  
pp. 3427-3439 ◽  
Author(s):  
K. Hungershoefer ◽  
K. Zeromskiene ◽  
Y. Iinuma ◽  
G. Helas ◽  
J. Trentmann ◽  
...  

Abstract. A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany) as part of the "Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere" (EFEU) project. The combustion conditions were monitored with concomitant CO2 and CO measurements. The mass scattering efficiencies of 8.9±0.2 m2 g−1 and 9.3±0.3 m2 g−1 obtained for aerosol particles from the combustion of savanna grass and an African hardwood (musasa), respectively, are larger than typically reported mainly due to differences in particle size distribution. The photoacoustically measured mass absorption efficiencies of 0.51±0.02 m2 g−1 and 0.50±0.02 m2 g−1 were at the lower end of the literature values. Using the measured size distributions as well as the mass scattering and absorption efficiencies, Mie calculations provided effective refractive indices of 1.60−0.010i (savanna grass) and 1.56−0.010i (musasa) (λ=0.55 μm). The apparent discrepancy between the low imaginary part of the refractive index and the high apparent elemental carbon (ECa) fractions (8 to 15%) obtained from the thermographic analysis of impactor samples can be explained by a positive bias in the elemental carbon data due to the presence of high molecular weight organic substances. Potential artefacts in optical properties due to instrument bias, non-natural burning conditions and unrealistic dilution history of the laboratory smoke cannot be ruled out and are also discussed in this study.


2010 ◽  
Vol 3 (2) ◽  
pp. 407-427 ◽  
Author(s):  
M. E. Popa ◽  
M. Gloor ◽  
A. C. Manning ◽  
A. Jordan ◽  
U. Schultz ◽  
...  

Abstract. Quasi-continuous, in-situ measurements of atmospheric CO2, O2/N2, CH4, CO, N2O, and SF6 have been performed since August 2005 at the tall tower station near Bialystok, in Eastern Poland, from five heights up to 300 m. Besides the in-situ measurements, flask samples are filled approximately weekly and measured at Max-Planck Institute for Biogeochemistry for the same species and, in addition, for H2, Ar/N2 and the stable isotopes 13C and 18O in CO2. The in-situ measurement system was built based on commercially available analysers: a LiCor 7000 for CO2, a Sable Systems "Oxzilla" FC-2 for O2, and an Agilent 6890 gas chromatograph for CH4, CO, N2O and SF6. The system was optimized to run continuously with very little maintenance and to fulfill the precision requirements of the CHIOTTO project. The O2/N2 measurements in particular required special attention in terms of technical setup and quality assurance. The evaluation of the performance after more than three years of operation gave overall satisfactory results, proving that this setup is suitable for long term remote operation with little maintenance. The precision achieved for all species is within or close to the project requirements. The comparison between the in-situ and flask sample results, used to verify the accuracy of the in-situ measurements, showed no significant difference for CO2, O2/N2, CH4 and N2O, and a very small difference for SF6. The same comparison however revealed a statistically significant difference for CO, of about 6.5 ppb, for which the cause could not be fully explained. From more than three years of data, the main features at Bialystok have been characterized in terms of variability, trends, and seasonal and diurnal variations. CO2 and O2/N2 show large short term variability, and large diurnal signals during the warm seasons, which attenuate with the increase of sampling height. The trends calculated from this dataset, over the period August 2005 to December 2008, are 2.02±0.46 ppm/year for CO2 and −23.2±2.5 per meg/year for O2/N2. CH4, CO and N2O show also higher variability at the lower sampling levels, which in the case of CO is strongly seasonal. Diurnal variations in CH4, CO and N2O mole fractions can be observed during the warm season, due to the periodicity of vertical mixing combined with the diurnal cycle of anthropogenic emissions. We calculated increase rates of 10.1±4.4 ppb/year for CH4, (−8.3)±5.3 ppb/year for CO and 0.67±0.08 ppb/year for N2O. SF6 shows only few events, and generally no vertical gradients, which suggests that there are no significant local sources. A weak SF6 seasonal cycle has been detected, which most probably is due to the seasonality of atmospheric circulation. SF6 increased during the time of our measurement at an average rate of 0.29±0.01 ppt/year.


2018 ◽  
Vol 11 (3) ◽  
pp. 989-1008 ◽  
Author(s):  
Klaus Klingmüller ◽  
Swen Metzger ◽  
Mohamed Abdelkader ◽  
Vlassis A. Karydis ◽  
Georgiy L. Stenchikov ◽  
...  

Abstract. To improve the aeolian dust budget calculations with the global ECHAM/MESSy atmospheric chemistry–climate model (EMAC), which combines the Modular Earth Submodel System (MESSy) with the ECMWF/Hamburg (ECHAM) climate model developed at the Max Planck Institute for Meteorology in Hamburg based on a weather prediction model of the European Centre for Medium-Range Weather Forecasts (ECMWF), we have implemented new input data and updates of the emission scheme. The data set comprises land cover classification, vegetation, clay fraction and topography. It is based on up-to-date observations, which are crucial to account for the rapid changes of deserts and semi-arid regions in recent decades. The new Moderate Resolution Imaging Spectroradiometer (MODIS)-based land cover and vegetation data are time dependent, and the effect of long-term trends and variability of the relevant parameters is therefore considered by the emission scheme. All input data have a spatial resolution of at least 0.1∘ compared to 1∘ in the previous version, equipping the model for high-resolution simulations. We validate the updates by comparing the aerosol optical depth (AOD) at 550 nm wavelength from a 1-year simulation at T106 (about 1.1∘) resolution with Aerosol Robotic Network (AERONET) and MODIS observations, the 10 µm dust AOD (DAOD) with Infrared Atmospheric Sounding Interferometer (IASI) retrievals, and dust concentration and deposition results with observations from the Aerosol Comparisons between Observations and Models (AeroCom) dust benchmark data set. The update significantly improves agreement with the observations and is therefore recommended to be used in future simulations.


2009 ◽  
Vol 2 (5) ◽  
pp. 2587-2637 ◽  
Author(s):  
M. E. Popa ◽  
M. Gloor ◽  
A. C. Manning ◽  
A. Jordan ◽  
U. Schultz ◽  
...  

Abstract. Quasi-continuous, in-situ measurements of atmospheric CO2, O2/N2, CH4, CO, N2O, and SF6 have been performed since August 2005 at the tall tower station near Bialystok, in Eastern Poland, from five heights up to 300 m. Besides the in-situ measurements, flask samples are filled approximately weekly and measured at Max-Planck Institute for Biogeochemistry for the same species and, in addition, for H2, Ar/N2 and the stable isotopes 13C and 18O in CO2. The in-situ measurement system was build based on commercially available analysers: a LiCor 7000 for CO2, a Sable Systems "Oxzilla" FC-2 for O2, and an Agilent 6890 gas chromatograph for CH4, CO, N2O and SF6. The system was optimized to run continuously with very little maintenance and to fulfill the precision requirements of the CHIOTTO project. The O2 measurements in particular required special attention in terms of technical setup and quality assurance. The evaluation of the performance after more than three years of operation gave overall satisfactory results, proving that this setup is suitable for long term remote operation with little maintenance. The precision achieved for all species is within or close to the project requirements. The comparison between the in-situ and flask sample results, used to verify the accuracy of the in-situ measurements, showed no significant difference for CO2, O2/N2, CH4 and N2O, and a very small difference for SF6. The same comparison however revealed a statistically significant difference for CO, of about 6.5 ppb, for which the cause could not be fully explained at the moment. From more than three years of data, the main features at Bialystok have been characterized in terms of variability, trends, and seasonal and diurnal variations. CO2 and O2/N2 show large short term variability, and large diurnal signals during the warm seasons, which attenuate with the increase of sampling height. The trends calculated from this dataset, over the period August 2005 to December 2008, are 2.02±0.46 ppm/year for CO2 and −23.2±2.5 per meg/year for O2/N2. CH4, CO and N2O show also higher variability at the lower sampling levels, which in the case of CO is strongly seasonal. Diurnal variations in CH4, CO and N2O mole fractions can be observed during the warm season, due to the periodicity of vertical mixing combined with the diurnal cycle of anthropogenic emissions. We calculated increase rates of 10.1±4.4 ppb/year for CH4, (−8.3)±5.3 ppb/year for CO and 0.67±0.08 ppb/year for N2O. SF6 shows only few events, and generally no vertical gradients, which suggests that there are no significant local sources. A weak SF6 seasonal cycle has been detected, which most probably is due to the seasonality of atmospheric circulation. SF6 increased during the time of our measurement at an average rate of 0.29±0.01 ppt/year.


2015 ◽  
Vol 15 (8) ◽  
pp. 11599-11726 ◽  
Author(s):  
M. O. Andreae ◽  
O. C. Acevedo ◽  
A. Araùjo ◽  
P. Artaxo ◽  
C. G. G. Barbosa ◽  
...  

Abstract. The Amazon Basin plays key roles in the carbon and water cycles, climate change, atmospheric chemistry, and biodiversity. It already has been changed significantly by human activities, and more pervasive change is expected to occur in the next decades. It is therefore essential to establish long-term measurement sites that provide a baseline record of present-day climatic, biogeochemical, and atmospheric conditions and that will be operated over coming decades to monitor change in the Amazon region as human perturbations increase in the future. The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine rain forest region in the central Amazon Basin, about 150 km northeast of the city of Manaus. An ecological survey including a biodiversity assessment has been conducted in the forest region surrounding the site. Two 80 m towers have been operated at the site since 2012, and a 325 m tower is nearing completion in mid-2015. Measurements of micrometeorological and atmospheric chemical variables were initiated in 2012, and their range has continued to broaden over the last few years. The meteorological and micrometeorological measurements include temperature and wind profiles, precipitation, water and energy fluxes, turbulence components, soil temperature profiles and soil heat fluxes, radiation fluxes, and visibility. A tree has been instrumented to measure stem profiles of temperature, light intensity, and water content in cryptogamic covers. The trace gas measurements comprise continuous monitoring of carbon dioxide, carbon monoxide, methane, and ozone at 5 to 8 different heights, complemented by a variety of additional species measured during intensive campaigns (e.g., VOC, NO, NO2, and OH reactivity). Aerosol optical, microphysical, and chemical measurements are made above the canopy as well as in the canopy space. They include light scattering and absorption, aerosol fluorescence, number and volume size distributions, chemical composition, cloud condensation nuclei (CCN) concentrations, and hygroscopicity. Initial results from ecological, meteorological, and chemical studies at the ATTO site are presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document