scholarly journals Molecular Motor Proteins of the Kinesin Superfamily Proteins (KIFs): Structure, Cargo and Disease

2004 ◽  
Vol 19 (1) ◽  
pp. 1 ◽  
Author(s):  
Dae-Hyun Seog ◽  
Dae-Ho Lee ◽  
Sang-Kyoung Lee
2013 ◽  
Vol 104 (2) ◽  
pp. 322a
Author(s):  
Jared C. Cochran ◽  
Yu C. Zhao ◽  
Dean E. Wilcox ◽  
F.J. Kull

Placenta ◽  
2009 ◽  
Vol 30 (10) ◽  
pp. 848-854 ◽  
Author(s):  
L. Sati ◽  
Y. Seval-Celik ◽  
G. Unek ◽  
E.T. Korgun ◽  
R. Demir

2020 ◽  
Vol 82 (10) ◽  
Author(s):  
Maria-Veronica Ciocanel ◽  
John Fricks ◽  
Peter R. Kramer ◽  
Scott A. McKinley

Abstract In many biological systems, the movement of individual agents is characterized having multiple qualitatively distinct behaviors that arise from a variety of biophysical states. For example, in cells the movement of vesicles, organelles, and other intracellular cargo is affected by their binding to and unbinding from cytoskeletal filaments such as microtubules through molecular motor proteins. A typical goal of theoretical or numerical analysis of models of such systems is to investigate effective transport properties and their dependence on model parameters. While the effective velocity of particles undergoing switching diffusion dynamics is often easily characterized in terms of the long-time fraction of time that particles spend in each state, the calculation of the effective diffusivity is more complicated because it cannot be expressed simply in terms of a statistical average of the particle transport state at one moment of time. However, it is common that these systems are regenerative, in the sense that they can be decomposed into independent cycles marked by returns to a base state. Using decompositions of this kind, we calculate effective transport properties by computing the moments of the dynamics within each cycle and then applying renewal reward theory. This method provides a useful alternative large-time analysis to direct homogenization for linear advection–reaction–diffusion partial differential equation models. Moreover, it applies to a general class of semi-Markov processes and certain stochastic differential equations that arise in models of intracellular transport. Applications of the proposed renewal reward framework are illustrated for several case studies such as mRNA transport in developing oocytes and processive cargo movement by teams of molecular motor proteins.


2008 ◽  
Vol 88 (3) ◽  
pp. 1089-1118 ◽  
Author(s):  
Nobutaka Hirokawa ◽  
Yasuko Noda

Various molecular cell biology and molecular genetic approaches have indicated significant roles for kinesin superfamily proteins (KIFs) in intracellular transport and have shown that they are critical for cellular morphogenesis, functioning, and survival. KIFs not only transport various membrane organelles, protein complexes, and mRNAs for the maintenance of basic cellular activity, but also play significant roles for various mechanisms fundamental for life, such as brain wiring, higher brain functions such as memory and learning and activity-dependent neuronal survival during brain development, and for the determination of important developmental processes such as left-right asymmetry formation and suppression of tumorigenesis. Accumulating data have revealed a molecular mechanism of cargo recognition involving scaffolding or adaptor protein complexes. Intramolecular folding and phosphorylation also regulate the binding activity of motor proteins. New techniques using molecular biophysics, cryoelectron microscopy, and X-ray crystallography have detected structural changes in motor proteins, synchronized with ATP hydrolysis cycles, leading to the development of independent models of monomer and dimer motors for processive movement along microtubules.


1997 ◽  
Vol 136 (3) ◽  
pp. 659-668 ◽  
Author(s):  
Wenqian Yu ◽  
David J. Sharp ◽  
Ryoko Kuriyama ◽  
Prabhat Mallik ◽  
Peter W. Baas

Microtubules in the axon are uniformly oriented, while microtubules in the dendrite are nonuniformly oriented. We have proposed that these distinct microtubule polarity patterns may arise from a redistribution of molecular motor proteins previously used for mitosis of the developing neuroblast. To address this issue, we performed studies on neuroblastoma cells that undergo mitosis but also generate short processes during interphase. Some of these processes are similar to axons with regard to their morphology and microtubule polarity pattern, while others are similar to dendrites. Treatment with cAMP or retinoic acid inhibits cell division, with the former promoting the development of the axon-like processes and the latter promoting the development of the dendrite-like processes. During mitosis, the kinesin-related motor termed CHO1/MKLP1 is localized within the spindle midzone where it is thought to transport microtubules of opposite orientation relative to one another. During process formation, CHO1/ MKLP1 becomes concentrated within the dendrite-like processes but is excluded from the axon-like processes. The levels of CHO1/MKLP1 increase in the presence of retinoic acid but decrease in the presence of cAMP, consistent with a role for the protein in dendritic differentiation. Moreover, treatment of the cultures with antisense oligonucleotides to CHO1/MKLP1 compromises the formation of the dendrite-like processes. We speculate that a redistribution of CHO1/MKLP1 is required for the formation of dendrite-like processes, presumably by establishing their characteristic nonuniform microtubule polarity pattern.


1991 ◽  
Vol 112 (6) ◽  
pp. 1189-1197 ◽  
Author(s):  
T Shimizu ◽  
K Furusawa ◽  
S Ohashi ◽  
Y Y Toyoshima ◽  
M Okuno ◽  
...  

The substrate specificities of dynein, kinesin, and myosin substrate turnover activity and cytoskeletal filament-driven translocation were examined using 15 ATP analogues. The dyneins were more selective in their substrate utilization than bovine brain kinesin or muscle heavy meromyosin, and even different types of dyneins, such as 14S and 22S dynein from Tetrahymena cilia and the beta-heavy chain-containing particle from the outer-arm dynein of sea urchin flagella, could be distinguished by their substrate specificities. Although bovine brain kinesin and muscle heavy meromyosin both exhibited broad substrate specificities, kinesin-induced microtubule translocation varied over a 50-fold range in speed among the various substrates, whereas heavy meromyosin-induced actin translocation varied only by fourfold. With both kinesin and heavy meromyosin, the relative velocities of filament translocation did not correlate well with the relative filament-activated substrate turnover rates. Furthermore, some ATP analogues that did not support the filament translocation exhibited filament-activated substrate turnover rates. Filament-activated substrate turnover and power production, therefore, appear to become uncoupled with certain substrates. In conclusion, the substrate specificities and coupling to motility are distinct for different types of molecular motor proteins. Such nucleotide "fingerprints" of enzymatic activities of motor proteins may prove useful as a tool for identifying what type of motor is involved in powering a motility-related event that can be reconstituted in vitro.


Sign in / Sign up

Export Citation Format

Share Document