scholarly journals Inhibition of a Mitotic Motor Compromises the Formation of Dendrite-like Processes from Neuroblastoma Cells

1997 ◽  
Vol 136 (3) ◽  
pp. 659-668 ◽  
Author(s):  
Wenqian Yu ◽  
David J. Sharp ◽  
Ryoko Kuriyama ◽  
Prabhat Mallik ◽  
Peter W. Baas

Microtubules in the axon are uniformly oriented, while microtubules in the dendrite are nonuniformly oriented. We have proposed that these distinct microtubule polarity patterns may arise from a redistribution of molecular motor proteins previously used for mitosis of the developing neuroblast. To address this issue, we performed studies on neuroblastoma cells that undergo mitosis but also generate short processes during interphase. Some of these processes are similar to axons with regard to their morphology and microtubule polarity pattern, while others are similar to dendrites. Treatment with cAMP or retinoic acid inhibits cell division, with the former promoting the development of the axon-like processes and the latter promoting the development of the dendrite-like processes. During mitosis, the kinesin-related motor termed CHO1/MKLP1 is localized within the spindle midzone where it is thought to transport microtubules of opposite orientation relative to one another. During process formation, CHO1/ MKLP1 becomes concentrated within the dendrite-like processes but is excluded from the axon-like processes. The levels of CHO1/MKLP1 increase in the presence of retinoic acid but decrease in the presence of cAMP, consistent with a role for the protein in dendritic differentiation. Moreover, treatment of the cultures with antisense oligonucleotides to CHO1/MKLP1 compromises the formation of the dendrite-like processes. We speculate that a redistribution of CHO1/MKLP1 is required for the formation of dendrite-like processes, presumably by establishing their characteristic nonuniform microtubule polarity pattern.

RSC Advances ◽  
2021 ◽  
Vol 11 (16) ◽  
pp. 9112-9120
Author(s):  
Jenna L. Gordon ◽  
Kristin J. Hinsen ◽  
Melissa M. Reynolds ◽  
Tyler A. Smith ◽  
Haley O. Tucker ◽  
...  

S-Nitrosoglutathione (GSNO) reduces cell viability, inhibits cell division, and induces cell cycle arrest and apoptosis in neuroblastoma cells.


2008 ◽  
Vol 16 (17) ◽  
pp. 8301-8313 ◽  
Author(s):  
Mohamed Sayed Gomaa ◽  
Jane L. Armstrong ◽  
Beatrice Bobillon ◽  
Gareth J. Veal ◽  
Andrea Brancale ◽  
...  

1988 ◽  
Vol 8 (4) ◽  
pp. 1677-1683 ◽  
Author(s):  
C J Thiele ◽  
P S Cohen ◽  
M A Israel

We detected expression of the c-myb proto-oncogene, which was initially thought to be expressed in a tissue-specific manner in cells of hematopoietic lineage, in human tissues of neuronal origin. Since the level of c-myb expression declined during fetal development, we studied the regulation of its expression in human neuroblastoma cell lines induced to differentiate by retinoic acid. The expression of c-myb declined during the maturation of neuroblastoma cells, and this change was mediated by a decrease in c-myb transcription.


1998 ◽  
Vol 9 (8) ◽  
pp. 2037-2049 ◽  
Author(s):  
William B. Raich ◽  
Adrienne N. Moran ◽  
Joel H. Rothman ◽  
Jeff Hardin

Members of the MKLP1 subfamily of kinesin motor proteins localize to the equatorial region of the spindle midzone and are capable of bundling antiparallel microtubules in vitro. Despite these intriguing characteristics, it is unclear what role these kinesins play in dividing cells, particularly within the context of a developing embryo. Here, we report the identification of a null allele ofzen-4, an MKLP1 homologue in the nematodeCaenorhabditis elegans, and demonstrate that ZEN-4 is essential for cytokinesis. Embryos deprived of ZEN-4 form multinucleate single-celled embryos as they continue to cycle through mitosis but fail to complete cell division. Initiation of the cytokinetic furrow occurs at the normal time and place, but furrow propagation halts prematurely. Time-lapse recordings and microtubule staining reveal that the cytokinesis defect is preceded by the dissociation of the midzone microtubules. We show that ZEN-4 protein localizes to the spindle midzone during anaphase and persists at the midbody region throughout cytokinesis. We propose that ZEN-4 directly cross-links the midzone microtubules and suggest that these microtubules are required for the completion of cytokinesis.


1995 ◽  
Vol 17 (4) ◽  
pp. 311-317 ◽  
Author(s):  
Theodore B. Moore ◽  
Neil Sidell ◽  
Vitus J. T. Chow ◽  
Randal H. Medzoyan ◽  
Jerry I. Huang ◽  
...  

2003 ◽  
Vol 25 (9) ◽  
pp. 715-720 ◽  
Author(s):  
Yuki Yuza ◽  
Miyuki Agawa ◽  
Masaharu Matsuzaki ◽  
Hisashi Yamada ◽  
Mitsuyoshi Urashima

2004 ◽  
Vol 19 (1) ◽  
pp. 1 ◽  
Author(s):  
Dae-Hyun Seog ◽  
Dae-Ho Lee ◽  
Sang-Kyoung Lee

2005 ◽  
Vol 13 (4) ◽  
pp. 676-679 ◽  
Author(s):  
B B Goranov ◽  
Q D Campbell Hewson ◽  
A D J Pearson ◽  
C P F Redfern

Sign in / Sign up

Export Citation Format

Share Document