scholarly journals Nucleotide specificity of the enzymatic and motile activities of dynein, kinesin, and heavy meromyosin.

1991 ◽  
Vol 112 (6) ◽  
pp. 1189-1197 ◽  
Author(s):  
T Shimizu ◽  
K Furusawa ◽  
S Ohashi ◽  
Y Y Toyoshima ◽  
M Okuno ◽  
...  

The substrate specificities of dynein, kinesin, and myosin substrate turnover activity and cytoskeletal filament-driven translocation were examined using 15 ATP analogues. The dyneins were more selective in their substrate utilization than bovine brain kinesin or muscle heavy meromyosin, and even different types of dyneins, such as 14S and 22S dynein from Tetrahymena cilia and the beta-heavy chain-containing particle from the outer-arm dynein of sea urchin flagella, could be distinguished by their substrate specificities. Although bovine brain kinesin and muscle heavy meromyosin both exhibited broad substrate specificities, kinesin-induced microtubule translocation varied over a 50-fold range in speed among the various substrates, whereas heavy meromyosin-induced actin translocation varied only by fourfold. With both kinesin and heavy meromyosin, the relative velocities of filament translocation did not correlate well with the relative filament-activated substrate turnover rates. Furthermore, some ATP analogues that did not support the filament translocation exhibited filament-activated substrate turnover rates. Filament-activated substrate turnover and power production, therefore, appear to become uncoupled with certain substrates. In conclusion, the substrate specificities and coupling to motility are distinct for different types of molecular motor proteins. Such nucleotide "fingerprints" of enzymatic activities of motor proteins may prove useful as a tool for identifying what type of motor is involved in powering a motility-related event that can be reconstituted in vitro.

1991 ◽  
Vol 112 (6) ◽  
pp. 1199-1203 ◽  
Author(s):  
M Schliwa ◽  
T Shimizu ◽  
R D Vale ◽  
U Euteneuer

Membrane-bound organelles move bidirectionally along microtubules in the freshwater ameba, Reticulomyxa. We have examined the nucleotide requirements for transport in a lysed cell model and compared them with kinesin and dynein-driven motility in other systems. Both anterograde and retrograde transport in Reticulomyxa show features characteristic of dynein but not of kinesin-powered movements: organelle transport is reactivated only by ATP and no other nucleoside triphosphates; the Km and Vmax of the ATP-driven movements are similar to values obtained for dynein rather than kinesin-driven movement; and of 15 ATP analogues tested for their ability to promote organelle transport, only 4 of them did. This narrow specificity resembles that of dynein-mediated in vitro transport and is dissimilar to the broad specificity of the kinesin motor (Shimizu, T., K. Furusawa, S. Ohashi, Y. Y. Toyoshima, M. Okuno, F. Malik, and R. D. Vale. 1991. J. Cell Biol. 112: 1189-1197). Remarkably, anterograde and retrograde organelle transport cannot be distinguished at all with respect to nucleotide specificity, kinetics of movement, and the ability to use the ATP analogues. Since the "kinetic fingerprints" of the motors driving transport in opposite directions are indistinguishable, the same type of motor(s) may be involved in the two directions of movement.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


1995 ◽  
Vol 73 (03) ◽  
pp. 429-434 ◽  
Author(s):  
Kazuomi Kario ◽  
Takefumi Matsuo ◽  
Reiko Asada ◽  
Toshiyuki Sakata ◽  
Hisao Kato ◽  
...  

SummaryWe compared factor VII clotting activity (FVIIc) assays using different thromboplastins to determine which is the most sensitive for activated FVII (FVIIa) or for FVII antigen (FVIIag). FVIIc levels were measured using thromboplastins derived from bovine brain (FVIIc Bov), human placenta (FVIIc Hum), and rabbit brain (FVIIc Rab). FVIIa levels were measured by fluorogenic assays using human soluble tissue factor (rsTF) or bovine rsTF. We also measured FVII activity by an amidolytic assay (FVIIc:am Hum) using human thromboplastin and a chromogenic substrate for thrombin. FVIIag levels were determined by ELISA. In the FVIIa assay, the reaction time obtained from using bovine rsTF was shorter than that with human rsTF, suggesting that the interaction of plasma FVIIa with bovine rsTF was stronger than with human rsTF. The plasma FVIIa levels measured using human rsTF and bovine rsTF were almost the same (r=0.947, p<0.0001). Among the three FVIIc assays, FVIIc Bov had the strongest positive correlation with the plasma FVIIa level (r=0.886, p<0.000l), but had no correlation with FVIIag. An increase of 1 ng/ml in the plasma FVIIa level yielded a 27.9% increase of FVIIc Bov. Plasma FVIIc Hum and FVIIc:am Hum showed moderate correlations with both FVIIa (r=0.520, p<0.02 and r=0.569, p<0.01, respectively) and FVIIag (r=0.438, p<0.05 and r=0.468, p<0.05, respectively). FVIIc Rab had the lowest correlation with FVIIa (r=0.367, p<0.1), but had a moderate correlation with FVIIag (r=0.436, p<0.05). After in vitro cold activation, FVIIc Bov levels increased the most and FVIIc:am levels showed the least change. These findings indicate that consideration of the thromboplastin used for assay is necessary when assessing the clinical significance of FVII activity as a cardiovascular risk factor.


2020 ◽  
Vol 10 (5) ◽  
pp. 577-590
Author(s):  
Jai B. Sharma ◽  
Shailendra Bhatt ◽  
Asmita Sharma ◽  
Manish Kumar

Background: The potential use of nanocarriers is being explored rapidly for the targeted delivery of anticancer agents. Curcumin is a natural polyphenolic compound obtained from rhizomes of turmeric, belongs to family Zingiberaceae. It possesses chemopreventive and chemotherapeutic activity with low toxicity in almost all types of cancer. The low solubility and bioavailability of curcumin make it unable to use for the clinical purpose. The necessity of an effective strategy to overcome the limitations of curcumin is responsible for the development of its nanocarriers. Objective: This study is aimed to review the role of curcumin nanocarriers for the treatment of cancer with special emphasis on cellular uptake and in vitro cytotoxicity studies. In addition to this, the effect of various ligand conjugated curcumin nanoparticles on different types of cancer was also studied. Methods: A systematic review was conducted by extensively surfing the PubMed, science direct and other portals to get the latest update on recent development in nanocarriers of curcumin. Results: The current data from recent studies showed that nanocarriers of curcumin resulted in the targeted delivery, higher efficacy, enhanced bioavailability and lower toxicity. The curcumin nanoparticles showed significant inhibitory effects on cancer cells as compared to free curcumin. Conclusion: It can be concluded that bioavailability of curcumin and its cytotoxic effect to cancer cells can be enhanced by the development of curcumin based nanocarriers and it was found to be a potential drug delivery technique for the treatment of cancer.


1986 ◽  
Vol 261 (31) ◽  
pp. 14797-14803 ◽  
Author(s):  
T Akiyama ◽  
T Kadowaki ◽  
E Nishida ◽  
T Kadooka ◽  
H Ogawara ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1660
Author(s):  
Sevda Mihailova Yantcheva

The development of composite materials is subject to the desire to overcome polymerization shrinkage and generated polymerization stress. An indicator characterizing the properties of restorative materials, with specific importance for preventing secondary caries, is the integrity and durability of marginal sealing. It is a reflection of the effects of polymerization shrinkage and generated stress. The present study aimed to evaluate and correlate marginal integrity and micropermeability in second-class cavities restored with three different types of composites, representing different strategies to reduce polymerization shrinkage and stress: nanocomposite, silorane, and bulk-fill composite after a ten-month ageing period. Thirty standardized class ΙΙ cavities were prepared on extracted human molars. Gingival margins were 1 mm apical to the cementoenamel junction. Cavities were randomly divided into three groups, based on the composites used: FiltekUltimate-nanocomposite; Filtek Silorane LS-silorane; SonicFill-bulk-fill composite. All specimens were subjected to thermal cycles after that, dipped in saline for 10-mounds. After ageing, samples were immersed in a 2% methylene blue. Thus prepared, they were covered directly with gold and analyzed on SEM for assessment of marginal seal. When the SEM analysis was completed, the teeth were included into epoxy blocks and cut longitudinally on three slices for each cavity. An assessment of microleakage on stereomicroscope followed. Results were statistically analyzed. For marginal seal evaluation: F.Ultimate and F.Silorane differ statistically with more excellent results than SonicFill for marginal adaptation to the gingival margin, located entirely in the dentin. For microleakage evaluation: F.Ultimate and F.Silorane differ statistically with less microleakage than SonicFill. Based on the results obtained: a strong correlation is found between excellent results for marginal adaptation to the marginal gingival ridge and micropermeability at the direction to the axial wall. We observe a more significant influence of time at the gingival margin of the cavities. There is a significant increase in the presence of marginal fissures (p = 0.001). A significant impact of time (p < 0.000) and of the material (p < 0.000) was found in the analysis of the microleakage.


Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Anna Virginia Adriana Pirozzi ◽  
Paola Imbimbo ◽  
Antonella D’Agostino ◽  
Virginia Tirino ◽  
Rosario Finamore ◽  
...  

Several plant extracts are acquiring increasing value because of their antioxidant activity and hypolipidemic properties. Among them, great interest has been recently paid to açai fruit as a functional food. The aim of this study was to test the ability of açai extract in reducing oxidative stress and modulating lipid metabolism in vitro using different cell models and different types of stress. In fact, lipid peroxidation as evaluated in a HepG2 model was reduced five-fold when using 0.25 µg/mL of extract, and it was further reduced (20-fold) with the concentration increase up to 2.5 µg/mL. With the non alcoholic fatty liver disease (NAFLD)in vitro model, all concentrations tested showed at least a two-fold reduced fat deposit. In addition, primary adipocytes challenged with TNF-α under hypoxic conditions to mimic the persistent subcutaneous fat, treated with açai extract showed an approximately 40% reduction of fat deposit. Overall, our results show that açai is able to counteract oxidative states in all the cell models analysed and to prevent the accumulation of lipid droplets. No toxic effects and high stability overtime were highlighted at the concentrations tested. Therefore, açai can be considered a suitable support in the prevention of different alterations of lipid and oxidative metabolism responsible for fat deposition and metabolic pathological conditions.


2021 ◽  
Author(s):  
Zenita Adhireksan ◽  
Deepti Sharma ◽  
Phoi Leng Lee ◽  
Qiuye Bao ◽  
Sivaraman Padavattan ◽  
...  

Abstract Structural characterization of chromatin is challenging due to conformational and compositional heterogeneity in vivo and dynamic properties that limit achievable resolution in vitro. Although the maximum resolution for solving structures of large macromolecular assemblies by electron microscopy has recently undergone profound increases, X-ray crystallographic approaches may still offer advantages for certain systems. One such system is compact chromatin, wherein the crystalline state recapitulates the crowded molecular environment within the nucleus. Here we show that nucleosomal constructs with cohesive-ended DNA can be designed that assemble into different types of circular configurations or continuous fibers extending throughout crystals. We demonstrate the utility of the method for characterizing nucleosome compaction and linker histone binding at near-atomic resolution but also advance its application for tackling further problems in chromatin structural biology and for generating novel types of DNA nanostructures. We provide a library of cohesive-ended DNA fragment expression constructs and a strategy for engineering DNA-based nanomaterials with a seemingly vast potential variety of architectures and histone chemistries.


Sign in / Sign up

Export Citation Format

Share Document