scholarly journals KAJIAN METODE METODE STEGANOGRAFI PADA DOMAIN SPASIAL

2020 ◽  
Vol 5 (2) ◽  
pp. 259-264
Author(s):  
Gunawan Wibisono ◽  
Tri Waluyo ◽  
Erik Iman Heri Ujianto

This paper contains a review of the spatial domain steganographic literature. The purpose of this paper is to provide knowledge about techniques or methods that exist in the spatial domain of steganography. Steganography is the science or technique for hiding secret messages in other messages so that the existence of the secret message cannot be accessed by others who do not have authority. There are several popular spatial domains of steganographic techniques, namely LSB (Least Significant Bit), which is mapping secret message bits in the rightmost bit (LSB) of each color pixel and PVD (Pixel Value Differencing) which in this method offers a larger message storage capacity , with better image quality compared to other methods in the spatial domain. Because privacy issues continue to develop along with various digital communication technologies, and increasingly strong security threats, steganography can play a role in society to maintain the confidentiality of both picture, voice and video messages. For this reason it is important for us to be aware of steganographic technology and its implications.

Author(s):  
Aditya Kumar Sahu ◽  
Gandharba Swain

<p>There has been a tremendous growth in Information and Communication technologies during the last decade. Internet has become the dominant media for data communication. But the secrecy of the data is to be taken care. Steganography is a technique for achieving secrecy for the data communicated in Internet. This paper presents a review of the steganography techniques based on least significant bit (LSB) substitution and pixel value differencing (PVD). The various techniques proposed in the literature are discussed and possible comparison is done along with their respective merits. The comparison parameters considered are, (i) hiding capacity, (ii) distortion measure, (iii) security, and (iv) computational complexity.</p>


2018 ◽  
Vol 7 (3.27) ◽  
pp. 488
Author(s):  
D Saravanan ◽  
N Sivaprasad ◽  
Dennis Joseph

The least-significant-bit based approach is a popular type of stenographic algorithms in the spatial domain. However, we find that in most existing approaches, the choice of embedding positions within a cover audio mainly depends on a pseudorandom number generator without considering the relationship between the audio content itself and the size of the secret message. In this paper, we expand the least significant bit matching revisited audio stegnography and propose an edge adaptive scheme which can select the embedding regions according to the size of secret message and the difference between two consecutive pixels in the cover audio. For lower embedding rates, only sharper edge regions are used while keeping the other smoother regions as they are. When the embedding rate increases, more edge regions can be released adaptively for data hiding by adjusting just a few parameters. New scheme can enhance the security significantly compared with typical least significant bit-based approaches as well as their edge adaptive ones, such as pixel-value-differencing-based approaches, while preserving higher visual quality of stegno audios at the same time.  


2021 ◽  
Vol 8 (9) ◽  
pp. 373-377
Author(s):  
Alade Oluwaseun. Modupe ◽  
Amusan Elizabeth Adedoyin ◽  
Adedeji Oluyinka Titilayo

Steganography is the art and science of hiding information by embedding data into cover media. Numerous techniques are designed to provide the security for the communication of data over the Internet. A good steganographic algorithm is recognized by the performance of the techniques measured with the support of the performance metrics among which are PSNR, MSE, SSIM, robustness and capacity to hide the information in the cover image. In this paper a comparative analysis of Least Significant Bit (LSB), Most Significant Bit (MSB) and Pixel Value Differencing (PVD) image steganography in grayscale and colored images was performed. Three different cover images was used to hide secret message. A comparative performance analysis of LSB, MSB and PVD methods used in image steganography was performed using peak signal to noise ratio (PSNR), Mean square error (MSE) and Structural Similarity index (SSIM) as performance metrics. LSB technique gives higher PSNR and SSIM values than MSB and PVD method with lower MSE than the other two techniques. Future research can be geared towards investigating the embedding capacity, security, and computational complexity of each technique. Keywords: Least Significant Bit (LSB), Most Significant Bit (MSB), Pixel value differencing (PVD), PSNR, SSIM and MSE,


2010 ◽  
Vol 10 (04) ◽  
pp. 589-607 ◽  
Author(s):  
NAGARAJ V. DHARWADKAR ◽  
B. B. AMBERKER

The exchange of secret message using images has vital importance in secret communication. Steganographic scheme is employed to achieve the task of secret message communication using images. The existing scheme based on pixel value differencing (PVD) with least significant bit (LSB) sequential substitution suffer from low embedding capacity. The embedding capacity is increased by using the edge regions of image obtained by neighborhood connectivity of pixel. We propose an adaptive steganographic scheme for gray-level images. Our scheme relies on the neighborhood connectivity of pixels to estimate the embedding capacity and resolves the problem of sequential substitution by jumbling the bits of secret message. The effect of cropping and filtration attacks on stegoimage is minimized by embedding the copies of secret message into four different regions of the cover image. The performance of the scheme is analyzed for various types of image processing attacks like cropping, blurring, filtering, adding noise, and sharpening. The proposed scheme is found rigid to these attacks.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Gandharba Swain

The combination of pixel value differencing (PVD) and least significant bit (LSB) substitution gives higher capacity and lesser distortion. However, there are three issues to be taken into account: (i) fall off boundary problem (FOBP), (ii) pixel difference histogram (PDH) analysis, and (iii) RS analysis. This paper proposes a steganography technique in two variants using combination of modified LSB substitution and PVD by taking care of these three issues. The first variant operates on 2 × 3 pixel blocks and the second technique operates on 3 × 3 pixel blocks. In one of the pixels of a block, embedding is performed using modified LSB substitution. Based on the new value of this pixel, difference values with other neighboring pixels are calculated. Using these differences, PVD approach is applied. The edges in multiple directions are exploited, so PDH analysis cannot detect this steganography. The LSB substitution is performed in only one pixel of the block, so RS analysis also cannot detect this steganography. To address the FOBP, suitable equations are used during embedding procedure. The experimental results such as bit rate and distortion measure are satisfactory.


2021 ◽  
Author(s):  
Wen-Bin Lin ◽  
Tai-Hung Lai ◽  
Ko-Chin Chang

Abstract The security and embedding capacity of pixel-value differencing (PVD) steganography is superior to that of least significant bit replacement steganography. Several studies have proposed extended PVD steganography methods that use the original concept of PVD steganography. The majority of the studies have verified their security against regular-singular detection analysis or pixel difference histogram attacks. Weighted stego image steganalysis is the state-of-the-art technology for PVD steganography. This study proposed a suitable parameter for the estimator based on different relative embedding ratios and the size of normal embedding blocks. The experimental results revealed that the proposed technology does not require advance knowledge of the original image. In addition, the proposed method is accurate and precise at any embedding ratio. In the future, this method may be utilized to analyze the security of extended PVD steganography.


2019 ◽  
Vol 9 (2) ◽  
Author(s):  
Dian Hafidh Zulfikar

<p class="SammaryHeader" align="center"><strong><em>Abstract</em></strong><em></em></p><p><em> </em>The  least significant-bit (LSB) based techniques are very popular for steganography in spatial domain. The simplest LSB technique simply replaces the LSB in the cover image with the  bits from secret information. Further advanced techniques use some criteria to identify the pixels in which LSB(s) can be replaced with the bits of secret information. In Discrete Cosine Transform (DCT) based technique insertion of secret information in carrier depends on the DCT coefficients. Any DCT coefficient value above proper threshold is a potential place for insertion of secret information.</p><p class="Abstrak"><strong> </strong><strong>Keywords :</strong> Discrete Cosine Transform (DCT), steganography, secret message</p><p><strong><em> </em><em>Abstra</em><em>k</em></strong></p><p>Pada steganografi domain spasial, teknik least significant-bit (LSB) merupakan teknik yang paling banyak digunakan pada steganografi. Teknik yang sederhana yang hanya mengubah nilai LSB pada cover image dengan nilai bit pesan rahasia, atau dengan teknik yang lebih baik lagi yaitu dengan menentukan bit-bit LSB mana yang akan dilakukan pergantian nilai bit. Lain halnya dengan metode Discrete Cosine Transform (DCT), teknik steganografi ini akan menyembunyikan informasi rahasia tergantung dari nilai Koefisien DCT.</p><p class="Abstrak"> </p><p class="Abstrak"><strong>Kata Kunci :</strong> Steganografi, DCT, Citra, JPEG, Pesan Rahasia</p>


Sign in / Sign up

Export Citation Format

Share Document