scholarly journals Interactive effects of temperature and salinity on shell formation and general condition in Baltic Sea Mytilus edulis and Arctica islandica

2012 ◽  
Vol 14 (3) ◽  
pp. 289-298 ◽  
Author(s):  
C Hiebenthal ◽  
EER Philipp ◽  
A Eisenhauer ◽  
M Wahl
2021 ◽  
Vol 157 ◽  
pp. 108235
Author(s):  
Nikhil R. Chari ◽  
Yang Lin ◽  
Yuan S. Lin ◽  
Whendee L. Silver

1996 ◽  
Vol 59 (1) ◽  
pp. 16-23 ◽  
Author(s):  
R. H. LINTON ◽  
W. H. CARTER ◽  
M. D. PIERSON ◽  
C. R. HACKNEY ◽  
J. D. EIFERT

The heat resistance of Listeria monocytogenes was determined in infant formula for all possible combinations of temperature (50, 55, and 60°C), pH level (5, 6, and 7), and NaCl concentration (0, 2, and 4%). Survival curves were fit using nonlinear regression with a Gompertz equation. The Gompertz equation was flexible enough to fit the three most commonly observed survival curves: linear curves, those with an initial lag region followed by a linear region, and sigmoidal shaped. Parameter estimates obtained by the method of nonlinear least squares were used to describe the effect(s) of different heating treatments on the lag region, death rate, and tailing region of survival curves. These estimates were further used to predict single and interactive effects of temperature, pH, and percentage of NaCl on the log of the surviving fraction (LSF) of bacteria. Interactions among these variables significantly (P ≤ .05) affected the LSF. Generally, increased pH or NaCl concentration lead to an increased LSF, whereas increased time or temperature lead to a decreased LSF. All multiple-factor interactions significantly (P ≤ .05) affected the LSF. The correlation of observed LSF versus predicted LSF (R2 = .92) indicated that the estimated Gompertz equation was in close agreement with the observation. This study demonstrated that the Gompertz equation and nonlinear regression can be used as an effective means to predict survival curve shape and response to heat of L. monocytogenes under many different environmental conditions.


2000 ◽  
Vol 203 (21) ◽  
pp. 3355-3368 ◽  
Author(s):  
K. Tschischka ◽  
D. Abele ◽  
H.O. Portner

The rates of oxygen uptake of the marine polychaete Nereis pelagica and the bivalve Arctica islandica depend on the availability of ambient oxygen. This is manifest both at the tissue level and in isolated mitochondria studied between oxygen tensions (P(O2)) of 6.3 and 47.6 kPa (47–357 mmHg). Oxyconformity was found in both Baltic Sea (Kiel Bight) and cold-adapted White Sea populations of the two species. However, mitochondria isolated from White Sea specimens of N. pelagica and A. islandica showed a two- to threefold higher aerobic capacity than mitochondria prepared from Baltic Sea specimens. We tested whether mitochondrial oxyconformity can be explained by an additional electron pathway that is directly controlled by P(O2). Mitochondrial respiration of both invertebrate species was inhibited by cyanide (KCN) and by salicylhydroxamic acid (SHAM). The overall rate of mitochondrial oxygen consumption increased at high P(O2). Phosphorylation efficiency (ADP/O ratio) decreased at elevated P(O2) (27.5-47.6 kPa, 206–357 mmHg), regardless of whether malate or succinate was used as a substrate. In contrast to the invertebrate mitochondria studied, mitochondria isolated from bovine heart, as an oxyregulating control species, did not show an elevated rate of oxygen uptake at high P(O2) in any respiratory state, with the exception of state 2 malate respiration. In addition, rates of ATP formation, respiratory control ratios (RCR) and ADP/O ratios remained virtually unchanged or even tended to decreased. In conclusion, the comparison between mitochondria from oxyregulating and oxyconforming organisms supports the existence of an alternative oxidase in addition to the classical cytochrome c oxidase. In accordance with models discussed previously, oxidative phosphorylation does not explain the rate of mitochondrial oxygen consumption during progressive activation of the alternative electron transport system. We discuss the alternative system, thought to be adaptive in confined, usually hypoxic environments, where excess oxygen can be eliminated and oxygen levels can be kept low by an increase in the rate of oxygen consumption, thereby minimizing the risk of oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document