Use of a Modified Gompertz Equation to Predict the Effects of Temperature, pH, and NaCl on the Inactivation of Listeria monocytogenes Scott A Heated in Infant Formula
The heat resistance of Listeria monocytogenes was determined in infant formula for all possible combinations of temperature (50, 55, and 60°C), pH level (5, 6, and 7), and NaCl concentration (0, 2, and 4%). Survival curves were fit using nonlinear regression with a Gompertz equation. The Gompertz equation was flexible enough to fit the three most commonly observed survival curves: linear curves, those with an initial lag region followed by a linear region, and sigmoidal shaped. Parameter estimates obtained by the method of nonlinear least squares were used to describe the effect(s) of different heating treatments on the lag region, death rate, and tailing region of survival curves. These estimates were further used to predict single and interactive effects of temperature, pH, and percentage of NaCl on the log of the surviving fraction (LSF) of bacteria. Interactions among these variables significantly (P ≤ .05) affected the LSF. Generally, increased pH or NaCl concentration lead to an increased LSF, whereas increased time or temperature lead to a decreased LSF. All multiple-factor interactions significantly (P ≤ .05) affected the LSF. The correlation of observed LSF versus predicted LSF (R2 = .92) indicated that the estimated Gompertz equation was in close agreement with the observation. This study demonstrated that the Gompertz equation and nonlinear regression can be used as an effective means to predict survival curve shape and response to heat of L. monocytogenes under many different environmental conditions.