cellular stress responses
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 75)

H-INDEX

31
(FIVE YEARS 6)

2022 ◽  
Vol 23 (1) ◽  
pp. 523
Author(s):  
Sayaka Ueno ◽  
Tamotsu Sudo ◽  
Akira Hirasawa

Ataxia–telangiectasia mutated (ATM) functions as a key initiator and coordinator of DNA damage and cellular stress responses. ATM signaling pathways contain many downstream targets that regulate multiple important cellular processes, including DNA damage repair, apoptosis, cell cycle arrest, oxidative sensing, and proliferation. Over the past few decades, associations between germline ATM pathogenic variants and cancer risk have been reported, particularly for breast and pancreatic cancers. In addition, given that ATM plays a critical role in repairing double-strand breaks, inhibiting other DNA repair pathways could be a synthetic lethal approach. Based on this rationale, several DNA damage response inhibitors are currently being tested in ATM-deficient cancers. In this review, we discuss the current knowledge related to the structure of the ATM gene, function of ATM kinase, clinical significance of ATM germline pathogenic variants in patients with hereditary cancers, and ongoing efforts to target ATM for the benefit of cancer patients.


2021 ◽  
Author(s):  
Steven G. Fagan ◽  
Shona Pfeiffer

Advancements in RNA sequencing technologies in recent years have contributed greatly to our understanding of the transcriptome and the now widely recognized multifaceted functions of RNA. The discovery and functional analysis of an increasing number of novel small non-coding RNAs (ncRNAs) has highlighted their importance as critical regulators of gene expression and brain function. In particular, two diverse classes of ncRNAs, microRNAs (miRNAs) and tRNA-derived small RNAs (tsRNAs), are especially abundant in the nervous system and play roles in regulation of gene expression and protein translation, cellular stress responses and complex underlying pathophysiology of neurological diseases. This chapter will discuss the most recent findings highlighting the dysregulation, functions and regulatory roles of ncRNAs in the pathophysiological mechanisms of neurological disorders and their relevance as novel biomarkers of injury and therapeutic agents.


2021 ◽  
Vol 11 (22) ◽  
pp. 11021
Author(s):  
Emmanouil Tsakoumis ◽  
Thomais Tsoulia ◽  
Konstantinos Feidantsis ◽  
Foivos Alexandros Mouchlianitis ◽  
Panagiotis Berillis ◽  
...  

Herein we investigated the cellular responses of the endemic fish species Alburnus vistonicus Freyhof & Kottelat, 2007, under the variation of several physico-chemical parameters including temperature (°C), salinity (psu), dissolved oxygen (mg/L), pH and conductivity (μS/cm), which were measured in situ. Monthly fish samplings (October 2014–September 2015) were conducted in Vistonis Lake in northern Greece, a peculiar ecosystem with brackish waters in its southern part and high salinity fluctuations in its northern part. Fish gills and liver responses to the changes of the physico-chemical parameters were tested biochemically and histologically. Heat shock protein levels appeared to be correlated with salinity fluctuations, indicating the adaptation of A. vistonicus to the particular environment. The latter is also enhanced by increased Na+-K+ ATPase levels, in response to salinity increase during summer. The highest mitogen activated protein kinases phosphorylation levels were observed along with the maximum mean salinity values. A variety of histological lesions were also detected in the majority of the gill samples, without however securing salinity as the sole stress factor. A. vistonicus cellular stress responses are versatile and shifting according to the examined tissue, biomarker and season, in order for this species to adapt to its shifting habitat.


Author(s):  
Peyman P. Aryanpur ◽  
Telsa M. Mittelmeier ◽  
Timothy A. Bolger

Ded1 is a conserved RNA helicase that promotes translation initiation in steady-state conditions. Ded1 has also been shown to regulate translation during cellular stress and affect the dynamics of stress granules (SGs), accumulations of RNA and protein linked to translation repression. To better understand its role in stress responses, we examined Ded1 function in two different models: DED1 overexpression and oxidative stress. DED1 overexpression inhibits growth and promotes the formation of SGs. A ded1 mutant lacking the low-complexity C-terminal region ( ded1-ΔCT ), which mediates Ded1 oligomerization and interaction with the translation factor eIF4G1, suppressed these phenotypes, consistent with other stresses. During oxidative stress, a ded1-ΔCT mutant was defective in growth and in SG formation compared to wild-type cells, although SGs were increased rather than decreased in these conditions. Unlike stress induced by direct TOR inhibition, the phenotypes in both models were only partially dependent on eIF4G1 interaction, suggesting an additional contribution from Ded1 oligomerization. Furthermore, examination of the growth defects and translational changes during oxidative stress suggested that Ded1 plays a role during recovery from stress. Integrating these disparate results, we propose that Ded1 controls multiple aspects of translation and RNP dynamics in both initial stress responses and during recovery.


2021 ◽  
Author(s):  
Om Prakash Dwivedi ◽  
Karina Barreiro ◽  
Annemari Käräjämäki ◽  
Erkka Valo ◽  
Rashmi B Prasad ◽  
...  

Diabetic kidney disease (DKD) is a severe complication of type 1 diabetes (T1D), which lacks non-invasive early biomarkers. Although less explored, mRNAs in urinary extracellular vesicles (uEV) could reflect changes in the kidney transcriptome during DKD development. We performed genome-wide mRNA sequencing of >100 uEV samples from two T1D cohorts with 24-hour and overnight urine collections. Our uEV pipeline allowed reproducible detection of >10,000 mRNAs bearing overall similarity to kidney transcriptome. uEV from T1D DKD groups showed significant upregulation of 13 genes, prevalently expressed by proximal tubular cells within the kidney. Strikingly, six genes involved in cellular stress responses including protection against oxidative stress (GPX3, NOX4, MSRB, MSRA, HRSP12 and CRYAB) correlated with hyperglycemia and long-term changes in kidney function independent of albuminuria status. The study identified genes associated with glycemic stress in T1D DKD and confirmed the utility of uEV in capturing pathological gene expression signatures from kidney.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5143
Author(s):  
Gary Hardiman ◽  
Stephen J. Savage ◽  
E. Starr Hazard ◽  
Willian A. da Silveira ◽  
Rebecca Morgan ◽  
...  

An emerging theory about racial differences in cancer risk and outcomes is that psychological and social stressors influence cellular stress responses; however, limited empirical data are available on racial differences in cellular stress responses among men who are at risk for adverse prostate cancer outcomes. In this study, we undertook a systems approach to examine molecular profiles and cellular stress responses in an important segment of African American (AA) and European American (EA) men: men undergoing prostate biopsy. We assessed the prostate transcriptome with a single biopsy core via high throughput RNA sequencing (RNA-Seq). Transcriptomic analyses uncovered impacted biological pathways including PI3K-Akt signaling pathway, Neuroactive ligand-receptor interaction pathway, and ECM-receptor interaction. Additionally, 187 genes mapping to the Gene Ontology (GO) terms RNA binding, structural constituent of ribosome, SRP-dependent co-translational protein targeting to membrane and the biological pathways, translation, L13a-mediated translational silencing of Ceruloplasmin expression were differentially expressed (DE) between EA and AA. This signature allowed separation of AA and EA patients, and AA patients with the most severe clinical characteristics. AA patients with elevated expression levels of this genomic signature presented with higher Gleason scores, a greater number of positive core biopsies, elevated dehydroepiandrosterone sulfate levels and serum vitamin D deficiency. Protein-protein interaction (PPI) network analysis revealed a high degree of connectivity between these 187 proteins.


2021 ◽  
Author(s):  
Robin Duelen ◽  
Domiziana Costamagna ◽  
Guillaume Gilbert ◽  
Liesbeth De Waele ◽  
Nathalie Goemans ◽  
...  

Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle disorder, caused by mutations in the Dystrophin gene. Cardiomyopathy is one of the major causes of early death. In this study, we used DMD patient-specific induced pluripotent stem cells (iPSCs) to model cardiomyopathic features in DMD and unravel novel pathological mechanistic insights. Cardiomyocytes (CMs) differentiated from DMD iPSCs showed enhanced premature cell death, due to significantly elevated intracellular reactive oxygen species (ROS) concentrations, as a result of depolarized mitochondria and high NADPH oxidase 4 (NOX4) protein levels. Genetic correction of Dystrophin through CRISPR/Cas9 editing restored normal ROS levels. Application of ROS reduction by N-acetyl-L-cysteine (NAC), partial Dystrophin re-expression by ataluren (PTC124) and enhancing mitochondrial electron transport chain function by idebenone improved cell survival of DMD iPSC-CMs. We show applications that could counteract the detrimental oxidative stress environment in DMD iPSC-CMs by stimulating adenosine triphosphate (ATP) production. ATP could bind to the ATP-binding domain in the NOX4 enzyme, and we demonstrate that ATP resulted in partial inhibition of the NADPH-dependent ROS production of NOX4. Considering the complexity and the early cellular stress responses in DMD cardiomyopathy, we propose to target ROS production and prevent the detrimental effects of NOX4 on DMD CMs as a promising therapeutic strategy.


Sign in / Sign up

Export Citation Format

Share Document