scholarly journals Minute ventilation stabilization during all pressure-control / support mechanical ventilation modes

2020 ◽  
pp. 275-282
Author(s):  
P. Candík ◽  
F. Depta ◽  
S. Imrecze ◽  
F. Sabol ◽  
A. Kolesar ◽  
...  

The main goal of our prospective randomized study was comparing compare the effectiveness of ventilation control method „Automatic proportional minute ventilation (APMV) “versus manually set pressure control ventilation modes in relationship to lung mechanics and gas exchange. 80 patients undergoing coronary artery bypass grafting (CABG) were randomized into 2 groups. 40 patients in the first group No. 1 (APMV group) were ventilated with pressure control (PCV) or pressure support ventilation (PSV) mode with APMV control. The other 40 patients (control group No.2) were ventilated with synchronized intermittent mandatory ventilation (SIMV-p) or pressure control modes (PCV) without APMV. Ventilation control with APMV was able to maintain minute ventilation more precisely in comparison with manual control (p<0.01), similarly deviations of ETCO2 were significantly lower (p<0.01). The number of manual corrections of ventilation settings was significantly lower when APMV was used (p<0.01). The differences in lung mechanics and hemodynamics were not statistically significant. Ventilation using APMV is more precise in maintaining minute ventilation and gas exchange compared with manual settings. It required less staff intervention, while respiratory system mechanics and hemodynamics are comparable. APMV showed as effective and safe method applicable on top of all pressure control ventilation modes.

1992 ◽  
Vol 146 (4) ◽  
pp. 965-973 ◽  
Author(s):  
Avi Nahum ◽  
William C. Burke ◽  
Sue A. Ravenscraft ◽  
Theodore W. Marcy ◽  
Alexander B. Adams ◽  
...  

2021 ◽  
Author(s):  
Emre Badur ◽  
Mustafa Altınay ◽  
Pınar Sayın ◽  
Ayşe Surhan Çınar ◽  
leyla türkoğlu ◽  
...  

Abstract Background: To compare the volume-controlled and pressure-controlled ventilation modes with near infrared spectroscopy (NIRS) cerebral oximetry and blood gas status in laparoscopic cholecystectomyMethods: Seventy patients (n=70), who underwent elective laparoscopic cholecystectomy operation were randomized into two groups (volume control ventilation - group V, pressure control ventilation - group P). Demographic data (age, gender, body mass index) and operative data (anesthesia, surgery, and insufflation durations) were recorded. Patients’ single derivation electrocardiogram, pulse oximetry, non-invasive arterial pressure, NIRS cerebral oximetry and end-tidal CO2 parameters were recorded. Measurements were done at the start of anesthesia (T0), at the end of intubation (T1), 5 minutes after the insufflation (T2), at the time just before desufflation (T3) and 5 minutes after desufflation (T4).The patients’ heart rate, systolic and diastolic arterial pressure, saturation of pulse oximetry, and NIRS values were recorded for time points. Additionally, arterial gas results and mechanical ventilation parameters were recorded as well. Results: No significant difference was found in age, sex, body mass index. Operation, anesthesia and insufflation durations were similar for the groups. In Group P, NIRS right T1-2-3 averages and NIRS left T2-3 averages were significantly higher than Group V (p=0.030, p=0.001, p=0.001, p=0.006, p=0.002 respectively). In Group P T1-T2-T4, mean peak pressures and mean plateau pressures were significantly lower than Group V (p=0.003, p=0.001, p<0.001, p=0.011, p=0.001, p<0.001 respectively).Conclusion: Mechanical ventilation that performed in pressure-control ventilation mode is resulted with better tissue oxygenation than volume-control ventilation mode. In pressure-control ventilation mode, peak pressure and plateau pressure were lower.Registration of study at ClinicalTrials.gov was made at 25/01/2021 with the NCT04723043 number.


2000 ◽  
Vol 48 (5) ◽  
pp. 766
Author(s):  
Byung O Jeong ◽  
Youn Suck Koh ◽  
Tae Sun Shim ◽  
Sang Do Lee ◽  
Woo Sung Kim ◽  
...  

2006 ◽  
Vol 23 (Supplement 37) ◽  
pp. 71
Author(s):  
G. Minas ◽  
K. Dimitroulakis ◽  
E. Christidou ◽  
K. Spanopoulos ◽  
A. Karponis ◽  
...  

2003 ◽  
Vol 99 (5) ◽  
pp. 1102-1111 ◽  
Author(s):  
Khaled A. Sedeek ◽  
Muneyuki Takeuchi ◽  
Klaudiusz Suchodolski ◽  
Sara O. Vargas ◽  
Motomu Shimaoka ◽  
...  

Background Pressure control ventilation (PCV), high-frequency oscillation (HFO), and intratracheal pulmonary ventilation (ITPV) may all be used to provide lung protective ventilation in acute respiratory distress syndrome, but the specific approach that is optimal remains controversial. Methods Saline lavage was used to produce acute respiratory distress syndrome in 21 sheep randomly assigned to receive PCV, HFO, or ITPV as follows: positive end-expiratory pressure (PCV and ITPV) and mean airway pressure (HFO) were set in a pressure-decreasing manner after lung recruitment that achieved a ratio of Pao2/Fio2 &gt; 400 mmHg. Respiratory rates were 30 breaths/min, 120 breaths/min, and 8 Hz, respectively, for PCV, ITPV, and HFO. Eucapnia was targeted with peak carinal pressure of no more than 35 cm H2O. Animals were then ventilated for 4 h. Results There were no differences among groups in gas exchange, lung mechanics, or hemodynamics. Tidal volume (PCV, 8.9 +/- 2.1 ml/kg; ITPV, 2.7 +/- 0.8 ml/kg; HFO, approximately 2.0 ml/kg) and peak carinal pressure (PCV, 30.6 +/- 2.6 cm H2O; ITPV, 22.3 +/- 4.8 cm H2O; HFO, approximately 24.3 cm H2O) were higher in PCV. Pilot histologic data showed greater interstitial hemorrhage and alveolar septal expansion in PCV than in HFO or ITPV. Conclusion These data indicate that HFO, ITPV, and PCV when applied with an open-lung protective ventilatory strategy results in the same gas exchange, lung mechanics, and hemodynamic response, but pilot data indicate that lung injury may be greater with PCV.


Sign in / Sign up

Export Citation Format

Share Document