scholarly journals P. aeruginosa Induced Lipid Peroxidation Causes Ferroptotic Cell Death in Airways

2021 ◽  
Vol 55 (5) ◽  
pp. 590-604

BACKGROUND/AIMS: Oxidative stress and infections by Pseudomonas aeruginosa (P. aeruginosa) are prominent in lungs of patients suffering from cystic fibrosis (CF). METHODS: The present study examines effects of P. aeruginosa on lipid peroxidation in human and mouse lungs, and cell death induced by P. aeruginosa in human airway epithelial cells. The role of the Ca2+ activated Cl- channel TMEM16A, the phospholipid scramblase TMEM16F, and the CFTR Cl- channel for ferroptotic cell death is examined. RESULTS: Lipid peroxidation was detected in human CF lungs, which correlated with bacterial infection. In vivo inoculation with P. aeruginosa or Staphylococcus aureus (S. aureus) induced lipid peroxidation in lungs of mice lacking expression of CFTR, and in lungs of wild type animals. Incubation of CFBE human airway epithelial cells with P. aeruginosa induced an increase in reactive oxygen species (ROS), causing lipid peroxidation and cell death independent of expression of wt-CFTR or F508del-CFTR. Knockdown of TMEM16A attenuated P. aeruginosa induced cell death. Antioxidants such as coenzyme Q10 and idebenone as well as the inhibitor of ferroptosis, ferrostatin-1, inhibited P. aeruginosa-induced cell death. CFBE cells expressing wtCFTR, but not F508del-CFTR, activated a basal Cl- conductance upon exposure to P. aeruginosa, which was caused by an increase in intracellular basal Ca2+ concentrations and activation of Ca2+-dependent adenylate cyclase. CONCLUSION: The data suggest an intrinsic pro-inflammatory phenotype in CF epithelial cells, while ferroptosis is observed in both non-CF and CF epithelial cells upon infection with P. aeruginosa. CF cells fail to activate fluid secretion in response to infection with P. aeruginosa. The use of antioxidants and inhibitors of ferroptosis is proposed as a treatment of pneumonia caused by infection with P. aeruginosa.

2019 ◽  
Vol 8 (5) ◽  
pp. 704-710
Author(s):  
Soyoung Kwak ◽  
Yoon Seok Choi ◽  
Hyung Gyun Na ◽  
Chang Hoon Bae ◽  
Si-Youn Song ◽  
...  

Abstract Mucus plays an important role in protecting the respiratory tract from irritants. However, mucus hypersecretion is a major indicator of airway diseases. 1,2-Benzisothiazolin-3-one (BIT), as a microbicide, induces asthmatic inflammation. Therefore, we focused on the effects of BIT-related mucin secretion in airway epithelial cells. Our in vivo study showed increased mucus and MUC5AC expressions in the bronchioles of mice that inhaled BIT. For investigating the signaling pathways, we performed experiments in human airway epithelial cells. BIT induced the MUC5AC expression and significantly increased the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The specific inhibitors of ERK1/2, p38, and NF-κB blocked the BIT-induced MUC5AC expression. Therefore, these results suggest that BIT induces the MUC5AC expression via the ERK1/2, p38, and NF-κB pathways in human airway epithelial cells, which may be involved in mucus hypersecretion associated with airway inflammatory diseases.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 351 ◽  
Author(s):  
Brajesh K. Singh ◽  
Ashley L. Cooney ◽  
Sateesh Krishnamurthy ◽  
Patrick L. Sinn

Extracellular vesicles (EVs) are a class of naturally occurring secreted cellular bodies that are involved in long distance cell-to-cell communication. Proteins, lipids, mRNA, and miRNA can be packaged into these vesicles and released from the cell. This information is then delivered to target cells. Since EVs are naturally adapted molecular messengers, they have emerged as an innovative, inexpensive, and robust method to deliver therapeutic cargo in vitro and in vivo. Well-differentiated primary cultures of human airway epithelial cells (HAE) are refractory to standard transfection techniques. Indeed, common strategies used to overexpress or knockdown gene expression in immortalized cell lines simply have no detectable effect in HAE. Here we use EVs to efficiently deliver siRNA or protein to HAE. Furthermore, EVs can deliver CFTR protein to cystic fibrosis donor cells and functionally correct the Cl− channel defect in vitro. EV-mediated delivery of siRNA or proteins to HAE provides a powerful genetic tool in a model system that closely recapitulates the in vivo airways.


2012 ◽  
Vol 303 (6) ◽  
pp. L509-L518 ◽  
Author(s):  
Thomas H. Hampton ◽  
Alicia E. Ballok ◽  
Jennifer M. Bomberger ◽  
Melanie R. Rutkowski ◽  
Roxanna Barnaby ◽  
...  

In the clinical setting, mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene enhance the inflammatory response in the lung to Pseudomonas aeruginosa ( P. aeruginosa ) infection. However, studies on human airway epithelial cells in vitro have produced conflicting results regarding the effect of mutations in CFTR on the inflammatory response to P. aeruginosa, and there are no comprehensive studies evaluating the effect of P. aeruginosa on the inflammatory response in airway epithelial cells with the ΔF508/ΔF508 genotype and their matched CF cell line rescued with wild-type (wt)-CFTR. CFBE41o- cells (ΔF508/ΔF508) and CFBE41o- cells complemented with wt-CFTR (CFBE-wt-CFTR) have been used extensively as an experimental model to study CF. Thus the goal of this study was to examine the effect of P. aeruginosa on gene expression and cytokine/chemokine production in this pair of cells. P. aeruginosa elicited a more robust increase in cytokine and chemokine expression (e.g., IL-8, CXCL1, CXCL2 and TNF-α) in CFBE-wt-CFTR cells compared with CFBE-ΔF508-CFTR cells. These results demonstrate that CFBE41o- cells complemented with wt-CFTR mount a more robust inflammatory response to P. aeruginosa than CFBE41o-ΔF508/ΔF508-CFTR cells. Taken together with other published studies, our data demonstrate that there is no compelling evidence to support the view that mutations in CFTR induce a hyperinflammatory response in human airway epithelial cells in vivo . Although the lungs of patients with CF have abundant levels of proinflammatory cytokines and chemokines, because the lung is populated by immune cells and epithelial cells there is no way to know, a priori, whether airway epithelial cells in the CF lung in vivo are hyperinflammatory in response to P. aeruginosa compared with non-CF lung epithelial cells. Thus studies on human airway epithelial cell lines and primary cells in vitro that propose to examine the effect of mutations in CFTR on the inflammatory response to P. aeruginosa have uncertain clinical significance with regard to CF.


2005 ◽  
Vol 289 (1) ◽  
pp. L85-L95 ◽  
Author(s):  
Jason C. L. Spurrell ◽  
Shahina Wiehler ◽  
Raza S. Zaheer ◽  
Scherer P. Sanders ◽  
David Proud

Human rhinovirus (HRV) infections trigger exacerbations of asthma and chronic obstructive pulmonary disease (COPD) and are associated with lymphocytic infiltration of the airways. We demonstrate that infection of primary cultures of human airway epithelial cells, or of the BEAS-2B human bronchial epithelial cell line, with human rhinovirus type 16 (HRV-16) induces expression of CXCL10 [IFN-γ-inducible protein 10 (IP-10)], a ligand for the CXCR3 receptor found on activated type 1 T lymphocytes and natural killer cells. IP-10 mRNA reached maximal levels 24 h after HRV-16 infection then declined, whereas protein levels peaked 48 h after infection with no subsequent new synthesis. Cytosolic levels of AU-rich factor 1, a protein associated with mRNA destabilization, increased beginning 24 h after HRV-16 infection. Generation of IP-10 required virus capable of replication but was not dependent on prior induction of type 1 interferons. Transfection of synthetic double-stranded RNA into epithelial cells induced robust production of IP-10, whereas transfection of single-stranded RNA had no effect. Induction of IP-10 gene expression by HRV-16 depended upon activation of NF-κB, as well as other transcription factor recognition sequences further upstream in the IP-10 promoter. In vivo infection of human volunteers with HRV-16 strikingly increased IP-10 protein in nasal lavages during symptomatic colds. Levels of IP-10 correlated with symptom severity, viral titer, and numbers of lymphocytes in airway secretions. Thus IP-10 may play a role in the pathogenesis of HRV-induced colds and in HRV-induced exacerbations of COPD and asthma.


2006 ◽  
Vol 209 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Kimberley A. O'Hara ◽  
Antonia A. Nemec ◽  
Jawed Alam ◽  
Linda R. Klei ◽  
Brooke T. Mossman ◽  
...  

2018 ◽  
Vol 102 ◽  
pp. 177-178
Author(s):  
Hrishikesh Kulkarni ◽  
Michelle Elvington ◽  
Yi-Chieh Perng ◽  
M. Kathryn Liszewski ◽  
Christopher Frakouh ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 944
Author(s):  
Jung Yeon Hong ◽  
Mi Na Kim ◽  
Eun Gyul Kim ◽  
Jae Woo Lee ◽  
Hye Rin Kim ◽  
...  

Exposure to high oxygen concentrations leads to generation of excessive reactive oxygen species, causing cellular injury and multiple organ dysfunctions and is associated with a high mortality rate. Clusterin (CLU) is a heterodimeric glycoprotein that mediates several intracellular signaling pathways, including cell death and inflammation. However, the role of CLU in the pathogenesis of hyperoxic acute lung injury (HALI) is unknown. Wild-type (WT) and CLU-deficient mice and cultured human airway epithelial cells were used. Changes in cell death- and inflammation-related molecules with or without hyperoxia exposure in cells and animals were determined. Hyperoxia induced an increase in CLU expression in mouse lungs and human airway epithelial cells. Mice lacking CLU had increased HALI and mortality rate compared with WT mice. In vitro, CLU-disrupted cells showed enhanced release of cytochrome c, Bax translocation, cell death and inflammatory cytokine expression. However, treatment with recombinant CLU attenuated hyperoxia-induced apoptosis. Moreover, the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses revealed metabolic pathways, hematopoietic cell lineage, response to stress and localization and regulation of immune system that were differentially regulated between WT and CLU−/− mice. These results demonstrate that prolonged hyperoxia-induced lung injury is associated with CLU expression and that CLU replenishment may alleviate hyperoxia-induced cell death.


2019 ◽  
Vol 60 (2) ◽  
pp. 144-157 ◽  
Author(s):  
Hrishikesh S. Kulkarni ◽  
Michelle L. Elvington ◽  
Yi-Chieh Perng ◽  
M. Kathryn Liszewski ◽  
Derek E. Byers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document